解决 PL 条件下优化问题的高平滑零阶方法

IF 0.7 4区 数学 Q3 MATHEMATICS, APPLIED
A. V. Gasnikov, A. V. Lobanov, F. S. Stonyakin
{"title":"解决 PL 条件下优化问题的高平滑零阶方法","authors":"A. V. Gasnikov, A. V. Lobanov, F. S. Stonyakin","doi":"10.1134/s0965542524700118","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In this paper, we study the black box optimization problem under the Polyak–Lojasiewicz (PL) condition, assuming that the objective function is not just smooth, but has higher smoothness. By using “kernel-based” approximations instead of the exact gradient in the Stochastic Gradient Descent method, we improve the best-known results of convergence in the class of gradient-free algorithms solving problems under the PL condition. We generalize our results to the case where a zeroth-order oracle returns a function value at a point with some adversarial noise. We verify our theoretical results on the example of solving a system of nonlinear equations.</p>","PeriodicalId":55230,"journal":{"name":"Computational Mathematics and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly Smooth Zeroth-Order Methods for Solving Optimization Problems under the PL Condition\",\"authors\":\"A. V. Gasnikov, A. V. Lobanov, F. S. Stonyakin\",\"doi\":\"10.1134/s0965542524700118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>In this paper, we study the black box optimization problem under the Polyak–Lojasiewicz (PL) condition, assuming that the objective function is not just smooth, but has higher smoothness. By using “kernel-based” approximations instead of the exact gradient in the Stochastic Gradient Descent method, we improve the best-known results of convergence in the class of gradient-free algorithms solving problems under the PL condition. We generalize our results to the case where a zeroth-order oracle returns a function value at a point with some adversarial noise. We verify our theoretical results on the example of solving a system of nonlinear equations.</p>\",\"PeriodicalId\":55230,\"journal\":{\"name\":\"Computational Mathematics and Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Mathematics and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0965542524700118\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Mathematics and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0965542524700118","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文研究了 Polyak-Lojasiewicz(PL)条件下的黑箱优化问题,假设目标函数不仅是平滑的,而且具有更高的平滑性。通过在随机梯度下降法中使用 "基于核 "的近似值而不是精确梯度,我们改进了解决 PL 条件下问题的无梯度算法中最著名的收敛结果。我们将结果推广到了零阶神谕在某点返回函数值并带有一些对抗噪声的情况。我们以求解非线性方程组为例,验证了我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Highly Smooth Zeroth-Order Methods for Solving Optimization Problems under the PL Condition

Highly Smooth Zeroth-Order Methods for Solving Optimization Problems under the PL Condition

Abstract

In this paper, we study the black box optimization problem under the Polyak–Lojasiewicz (PL) condition, assuming that the objective function is not just smooth, but has higher smoothness. By using “kernel-based” approximations instead of the exact gradient in the Stochastic Gradient Descent method, we improve the best-known results of convergence in the class of gradient-free algorithms solving problems under the PL condition. We generalize our results to the case where a zeroth-order oracle returns a function value at a point with some adversarial noise. We verify our theoretical results on the example of solving a system of nonlinear equations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Mathematics and Mathematical Physics
Computational Mathematics and Mathematical Physics MATHEMATICS, APPLIED-PHYSICS, MATHEMATICAL
CiteScore
1.50
自引率
14.30%
发文量
125
审稿时长
4-8 weeks
期刊介绍: Computational Mathematics and Mathematical Physics is a monthly journal published in collaboration with the Russian Academy of Sciences. The journal includes reviews and original papers on computational mathematics, computational methods of mathematical physics, informatics, and other mathematical sciences. The journal welcomes reviews and original articles from all countries in the English or Russian language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信