稳态片状光滑反应-扩散方程中的多层内层与退化解根的多重性差异

IF 0.7 4区 数学 Q3 MATHEMATICS, APPLIED
Qian Yang, Mingkang Ni
{"title":"稳态片状光滑反应-扩散方程中的多层内层与退化解根的多重性差异","authors":"Qian Yang, Mingkang Ni","doi":"10.1134/s0965542524700179","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A singularly perturbed stationary problem for a one-dimensional reaction-diffusion equation in the case when the degenerate equation has multiple roots is studied. This is a new class of problems with discontinuous reactive terms along some curve that is independent of the small parameter. The existence of a smooth solution with the transition from the triple root of one degenerate equation to the double root of the other degenerate equation in the neighborhood of some point on the discontinuous curve is studied. Based on the existence theorem of classical boundary value problems and the technique of matching asymptotic expansion, the existence of a smooth solution is proved. And the point itself and the asymptotic representation of this solution are constructed by the matching technique and modified boundary layer function method.</p>","PeriodicalId":55230,"journal":{"name":"Computational Mathematics and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multizonal Internal Layers in a Stationary Piecewise–Smooth Reaction-Diffusion Equation in the Case of the Difference of Multiplicity for the Roots of the Degenerate Solution\",\"authors\":\"Qian Yang, Mingkang Ni\",\"doi\":\"10.1134/s0965542524700179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>A singularly perturbed stationary problem for a one-dimensional reaction-diffusion equation in the case when the degenerate equation has multiple roots is studied. This is a new class of problems with discontinuous reactive terms along some curve that is independent of the small parameter. The existence of a smooth solution with the transition from the triple root of one degenerate equation to the double root of the other degenerate equation in the neighborhood of some point on the discontinuous curve is studied. Based on the existence theorem of classical boundary value problems and the technique of matching asymptotic expansion, the existence of a smooth solution is proved. And the point itself and the asymptotic representation of this solution are constructed by the matching technique and modified boundary layer function method.</p>\",\"PeriodicalId\":55230,\"journal\":{\"name\":\"Computational Mathematics and Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Mathematics and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0965542524700179\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Mathematics and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0965542524700179","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要 研究了一维反应-扩散方程在退化方程有多个根的情况下的奇异扰动静止问题。这是一类新问题,其反应项沿着与小参数无关的曲线不连续。研究了在不连续曲线上的某一点附近,是否存在从一个退化方程的三重根过渡到另一个退化方程的双重根的平稳解。基于经典边界值问题的存在定理和匹配渐近展开技术,证明了平稳解的存在性。并通过匹配技术和修正边界层函数法构建了点本身和该解的渐近表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multizonal Internal Layers in a Stationary Piecewise–Smooth Reaction-Diffusion Equation in the Case of the Difference of Multiplicity for the Roots of the Degenerate Solution

Multizonal Internal Layers in a Stationary Piecewise–Smooth Reaction-Diffusion Equation in the Case of the Difference of Multiplicity for the Roots of the Degenerate Solution

Abstract

A singularly perturbed stationary problem for a one-dimensional reaction-diffusion equation in the case when the degenerate equation has multiple roots is studied. This is a new class of problems with discontinuous reactive terms along some curve that is independent of the small parameter. The existence of a smooth solution with the transition from the triple root of one degenerate equation to the double root of the other degenerate equation in the neighborhood of some point on the discontinuous curve is studied. Based on the existence theorem of classical boundary value problems and the technique of matching asymptotic expansion, the existence of a smooth solution is proved. And the point itself and the asymptotic representation of this solution are constructed by the matching technique and modified boundary layer function method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Mathematics and Mathematical Physics
Computational Mathematics and Mathematical Physics MATHEMATICS, APPLIED-PHYSICS, MATHEMATICAL
CiteScore
1.50
自引率
14.30%
发文量
125
审稿时长
4-8 weeks
期刊介绍: Computational Mathematics and Mathematical Physics is a monthly journal published in collaboration with the Russian Academy of Sciences. The journal includes reviews and original papers on computational mathematics, computational methods of mathematical physics, informatics, and other mathematical sciences. The journal welcomes reviews and original articles from all countries in the English or Russian language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信