论带稳定修正的中央差分方案在三维传输方程中的稳定性

IF 0.7 4区 数学 Q3 MATHEMATICS, APPLIED
V. P. Zhukov
{"title":"论带稳定修正的中央差分方案在三维传输方程中的稳定性","authors":"V. P. Zhukov","doi":"10.1134/s0965542524700271","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>It is generally accepted that the central differences scheme with a stabilizing correction for the transport equation in the 3D case is conditionally stable. This article shows that, strictly speaking, this scheme is absolutely unstable. However, the region of unstable harmonics in the wave vector space and their increments quickly tend to zero as the Courant parameter tends to zero, which makes it possible to successfully use this scheme. Therefore, it is more correct to talk about the practically conditional stability of this scheme.</p>","PeriodicalId":55230,"journal":{"name":"Computational Mathematics and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Stability of a Central Difference Scheme with a Stabilizing Correction for the 3D Transport Equation\",\"authors\":\"V. P. Zhukov\",\"doi\":\"10.1134/s0965542524700271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>It is generally accepted that the central differences scheme with a stabilizing correction for the transport equation in the 3D case is conditionally stable. This article shows that, strictly speaking, this scheme is absolutely unstable. However, the region of unstable harmonics in the wave vector space and their increments quickly tend to zero as the Courant parameter tends to zero, which makes it possible to successfully use this scheme. Therefore, it is more correct to talk about the practically conditional stability of this scheme.</p>\",\"PeriodicalId\":55230,\"journal\":{\"name\":\"Computational Mathematics and Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Mathematics and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0965542524700271\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Mathematics and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0965542524700271","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要 一般认为,在三维情况下,对输运方程进行稳定修正的中心差分方案是有条件稳定的。本文指出,严格来说,该方案是绝对不稳定的。然而,随着库朗参数趋于零,波矢量空间中的不稳定谐波区域及其增量很快趋于零,这使得成功使用该方案成为可能。因此,更正确的说法是这种方案实际上的条件稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the Stability of a Central Difference Scheme with a Stabilizing Correction for the 3D Transport Equation

On the Stability of a Central Difference Scheme with a Stabilizing Correction for the 3D Transport Equation

Abstract

It is generally accepted that the central differences scheme with a stabilizing correction for the transport equation in the 3D case is conditionally stable. This article shows that, strictly speaking, this scheme is absolutely unstable. However, the region of unstable harmonics in the wave vector space and their increments quickly tend to zero as the Courant parameter tends to zero, which makes it possible to successfully use this scheme. Therefore, it is more correct to talk about the practically conditional stability of this scheme.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Mathematics and Mathematical Physics
Computational Mathematics and Mathematical Physics MATHEMATICS, APPLIED-PHYSICS, MATHEMATICAL
CiteScore
1.50
自引率
14.30%
发文量
125
审稿时长
4-8 weeks
期刊介绍: Computational Mathematics and Mathematical Physics is a monthly journal published in collaboration with the Russian Academy of Sciences. The journal includes reviews and original papers on computational mathematics, computational methods of mathematical physics, informatics, and other mathematical sciences. The journal welcomes reviews and original articles from all countries in the English or Russian language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信