单位球中多谐方程的里基尔-诺伊曼问题的格林函数

IF 0.7 4区 数学 Q3 MATHEMATICS, APPLIED
V. V. Karachik
{"title":"单位球中多谐方程的里基尔-诺伊曼问题的格林函数","authors":"V. V. Karachik","doi":"10.1134/s0965542524700258","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The Green’s function of the Riquier–Neumann problem for the polyharmonic equation in the unit ball is constructed, and an integral representation of solutions to the Riquier–Neumann problem is presented. Two examples are given.</p>","PeriodicalId":55230,"journal":{"name":"Computational Mathematics and Mathematical Physics","volume":"55 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green’s Function of the Riquier–Neumann Problem for the Polyharmonic Equation in the Unit Ball\",\"authors\":\"V. V. Karachik\",\"doi\":\"10.1134/s0965542524700258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The Green’s function of the Riquier–Neumann problem for the polyharmonic equation in the unit ball is constructed, and an integral representation of solutions to the Riquier–Neumann problem is presented. Two examples are given.</p>\",\"PeriodicalId\":55230,\"journal\":{\"name\":\"Computational Mathematics and Mathematical Physics\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Mathematics and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0965542524700258\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Mathematics and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0965542524700258","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要 构建了单位球内多谐方程的里基尔-诺伊曼问题的格林函数,并给出了里基尔-诺伊曼问题解的积分表示。给出了两个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Green’s Function of the Riquier–Neumann Problem for the Polyharmonic Equation in the Unit Ball

Abstract

The Green’s function of the Riquier–Neumann problem for the polyharmonic equation in the unit ball is constructed, and an integral representation of solutions to the Riquier–Neumann problem is presented. Two examples are given.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Mathematics and Mathematical Physics
Computational Mathematics and Mathematical Physics MATHEMATICS, APPLIED-PHYSICS, MATHEMATICAL
CiteScore
1.50
自引率
14.30%
发文量
125
审稿时长
4-8 weeks
期刊介绍: Computational Mathematics and Mathematical Physics is a monthly journal published in collaboration with the Russian Academy of Sciences. The journal includes reviews and original papers on computational mathematics, computational methods of mathematical physics, informatics, and other mathematical sciences. The journal welcomes reviews and original articles from all countries in the English or Russian language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信