斯比维递推关系的一般化

IF 1.7 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
T. Kim, D. S. Kim
{"title":"斯比维递推关系的一般化","authors":"T. Kim,&nbsp;D. S. Kim","doi":"10.1134/S1061920824020079","DOIUrl":null,"url":null,"abstract":"<p> In 2008, Spivey found a recurrence relation for the Bell numbers <span>\\(\\phi_{n}\\)</span>. We consider the probabilistic <span>\\(r\\)</span>-Bell polynomials associated with <span>\\(Y\\)</span>, <span>\\(\\phi_{n,r}^{Y}(x)\\)</span>, which are a probabilistic extension of the <span>\\(r\\)</span>-Bell polynomials. Here <span>\\(Y\\)</span> is a random variable whose moment generating function exists in some neighborhood of the origin and <span>\\(\\phi_{n}=\\phi_{n,0}^{1}(1)\\)</span>. The aim of this paper is to generalize the relation for the Bell numbers to that for the probabilistic <span>\\(r\\)</span>-Bell polynomials associated with <span>\\(Y\\)</span>. </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"31 2","pages":"218 - 226"},"PeriodicalIF":1.7000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalization of Spivey’s Recurrence Relation\",\"authors\":\"T. Kim,&nbsp;D. S. Kim\",\"doi\":\"10.1134/S1061920824020079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> In 2008, Spivey found a recurrence relation for the Bell numbers <span>\\\\(\\\\phi_{n}\\\\)</span>. We consider the probabilistic <span>\\\\(r\\\\)</span>-Bell polynomials associated with <span>\\\\(Y\\\\)</span>, <span>\\\\(\\\\phi_{n,r}^{Y}(x)\\\\)</span>, which are a probabilistic extension of the <span>\\\\(r\\\\)</span>-Bell polynomials. Here <span>\\\\(Y\\\\)</span> is a random variable whose moment generating function exists in some neighborhood of the origin and <span>\\\\(\\\\phi_{n}=\\\\phi_{n,0}^{1}(1)\\\\)</span>. The aim of this paper is to generalize the relation for the Bell numbers to that for the probabilistic <span>\\\\(r\\\\)</span>-Bell polynomials associated with <span>\\\\(Y\\\\)</span>. </p>\",\"PeriodicalId\":763,\"journal\":{\"name\":\"Russian Journal of Mathematical Physics\",\"volume\":\"31 2\",\"pages\":\"218 - 226\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061920824020079\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1061920824020079","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要 2008 年,Spivey 发现了贝尔数 \(\phi_{n}\)的递推关系。我们考虑与 \(Y\) 相关的概率贝尔多项式 \(\phi_{n,r}^{Y}(x)\),它是\(r\)-贝尔多项式的概率扩展。这里,\(Y\)是一个随机变量,它的矩生成函数存在于原点的某个邻域,并且\(\phi_{n}=\phi_{n,0}^{1}(1)\)。本文的目的是将贝尔数的关系推广到与\(Y\)相关的概率\(r\)-贝尔多项式的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalization of Spivey’s Recurrence Relation

In 2008, Spivey found a recurrence relation for the Bell numbers \(\phi_{n}\). We consider the probabilistic \(r\)-Bell polynomials associated with \(Y\), \(\phi_{n,r}^{Y}(x)\), which are a probabilistic extension of the \(r\)-Bell polynomials. Here \(Y\) is a random variable whose moment generating function exists in some neighborhood of the origin and \(\phi_{n}=\phi_{n,0}^{1}(1)\). The aim of this paper is to generalize the relation for the Bell numbers to that for the probabilistic \(r\)-Bell polynomials associated with \(Y\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Mathematical Physics
Russian Journal of Mathematical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
14.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信