利用序列近邻逼近对截断多变量正态进行可扩展采样

Jian Cao, Matthias Katzfuss
{"title":"利用序列近邻逼近对截断多变量正态进行可扩展采样","authors":"Jian Cao, Matthias Katzfuss","doi":"arxiv-2406.17307","DOIUrl":null,"url":null,"abstract":"We propose a linear-complexity method for sampling from truncated\nmultivariate normal (TMVN) distributions with high fidelity by applying\nnearest-neighbor approximations to a product-of-conditionals decomposition of\nthe TMVN density. To make the sequential sampling based on the decomposition\nfeasible, we introduce a novel method that avoids the intractable\nhigh-dimensional TMVN distribution by sampling sequentially from\n$m$-dimensional TMVN distributions, where $m$ is a tuning parameter controlling\nthe fidelity. This allows us to overcome the existing methods' crucial problem\nof rapidly decreasing acceptance rates for increasing dimension. Throughout our\nexperiments with up to tens of thousands of dimensions, we can produce\nhigh-fidelity samples with $m$ in the dozens, achieving superior scalability\ncompared to existing state-of-the-art methods. We study a tetrachloroethylene\nconcentration dataset that has $3{,}971$ observed responses and $20{,}730$\nundetected responses, together modeled as a partially censored Gaussian\nprocess, where our method enables posterior inference for the censored\nresponses through sampling a $20{,}730$-dimensional TMVN distribution.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable Sampling of Truncated Multivariate Normals Using Sequential Nearest-Neighbor Approximation\",\"authors\":\"Jian Cao, Matthias Katzfuss\",\"doi\":\"arxiv-2406.17307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a linear-complexity method for sampling from truncated\\nmultivariate normal (TMVN) distributions with high fidelity by applying\\nnearest-neighbor approximations to a product-of-conditionals decomposition of\\nthe TMVN density. To make the sequential sampling based on the decomposition\\nfeasible, we introduce a novel method that avoids the intractable\\nhigh-dimensional TMVN distribution by sampling sequentially from\\n$m$-dimensional TMVN distributions, where $m$ is a tuning parameter controlling\\nthe fidelity. This allows us to overcome the existing methods' crucial problem\\nof rapidly decreasing acceptance rates for increasing dimension. Throughout our\\nexperiments with up to tens of thousands of dimensions, we can produce\\nhigh-fidelity samples with $m$ in the dozens, achieving superior scalability\\ncompared to existing state-of-the-art methods. We study a tetrachloroethylene\\nconcentration dataset that has $3{,}971$ observed responses and $20{,}730$\\nundetected responses, together modeled as a partially censored Gaussian\\nprocess, where our method enables posterior inference for the censored\\nresponses through sampling a $20{,}730$-dimensional TMVN distribution.\",\"PeriodicalId\":501215,\"journal\":{\"name\":\"arXiv - STAT - Computation\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.17307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.17307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种线性复杂度方法,通过对截断多变量正态分布(TMVN)密度的条件乘积分解应用最近邻近似,从截断多变量正态分布中进行高保真采样。为了使基于分解的顺序采样可行,我们引入了一种新方法,通过从 $m$ 维 TMVN 分布(其中 $m$ 是控制保真度的调整参数)顺序采样,避免了难以处理的高维 TMVN 分布。这使我们克服了现有方法的关键问题,即随着维度的增加,接受率迅速降低。在我们进行的多达数万维度的实验中,我们可以生成 $m$ 为几十的高保真样本,与现有的最先进方法相比,我们实现了卓越的可扩展性。我们研究了一个四氯乙烯浓度数据集,该数据集有3{,}971$观测到的响应和20{,}730$未检测到的响应,这些响应一起被建模为部分删减的高斯过程(partially censored Gaussianprocess),我们的方法通过对20{,}730$维的TMVN分布进行采样,实现了对删减响应的后验推断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable Sampling of Truncated Multivariate Normals Using Sequential Nearest-Neighbor Approximation
We propose a linear-complexity method for sampling from truncated multivariate normal (TMVN) distributions with high fidelity by applying nearest-neighbor approximations to a product-of-conditionals decomposition of the TMVN density. To make the sequential sampling based on the decomposition feasible, we introduce a novel method that avoids the intractable high-dimensional TMVN distribution by sampling sequentially from $m$-dimensional TMVN distributions, where $m$ is a tuning parameter controlling the fidelity. This allows us to overcome the existing methods' crucial problem of rapidly decreasing acceptance rates for increasing dimension. Throughout our experiments with up to tens of thousands of dimensions, we can produce high-fidelity samples with $m$ in the dozens, achieving superior scalability compared to existing state-of-the-art methods. We study a tetrachloroethylene concentration dataset that has $3{,}971$ observed responses and $20{,}730$ undetected responses, together modeled as a partially censored Gaussian process, where our method enables posterior inference for the censored responses through sampling a $20{,}730$-dimensional TMVN distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信