通过量子微积分实现强$$(\alpha ,m)$$凸函数的赫米特-哈达马德式不等式

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Shashi Kant Mishra, Ravina Sharma, Jaya Bisht
{"title":"通过量子微积分实现强$$(\\alpha ,m)$$凸函数的赫米特-哈达马德式不等式","authors":"Shashi Kant Mishra, Ravina Sharma, Jaya Bisht","doi":"10.1007/s12190-024-02135-y","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we derive a quantum analogue of Hermite–Hadamard-type inequalities for twice differentiable convex functions whose second derivatives in absolute value are strongly <span>\\((\\alpha ,m )\\)</span>-convex. We obtain new bounds using the H<span>\\(\\ddot{o}\\)</span>lder and power mean inequalities. Moreover, we provide suitable examples in support of our theoretical results. We correlate our findings with comparable results in the literature and show that the obtained results are refinements and improvements.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hermite–Hadamard-type inequalities for strongly $$(\\\\alpha ,m)$$ -convex functions via quantum calculus\",\"authors\":\"Shashi Kant Mishra, Ravina Sharma, Jaya Bisht\",\"doi\":\"10.1007/s12190-024-02135-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we derive a quantum analogue of Hermite–Hadamard-type inequalities for twice differentiable convex functions whose second derivatives in absolute value are strongly <span>\\\\((\\\\alpha ,m )\\\\)</span>-convex. We obtain new bounds using the H<span>\\\\(\\\\ddot{o}\\\\)</span>lder and power mean inequalities. Moreover, we provide suitable examples in support of our theoretical results. We correlate our findings with comparable results in the literature and show that the obtained results are refinements and improvements.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12190-024-02135-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12190-024-02135-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们为绝对值二次导数为强((\alpha ,m)\)-凸函数的二次可微凸函数推导出了赫米特-哈达马德式不等式的量子类比。我们利用 H\(ddot{o}\)lder 和幂均值不等式得到了新的边界。此外,我们还提供了合适的例子来支持我们的理论结果。我们将我们的发现与文献中的可比结果进行了关联,并表明所获得的结果是对文献的完善和改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hermite–Hadamard-type inequalities for strongly $$(\alpha ,m)$$ -convex functions via quantum calculus

Hermite–Hadamard-type inequalities for strongly $$(\alpha ,m)$$ -convex functions via quantum calculus

In this paper, we derive a quantum analogue of Hermite–Hadamard-type inequalities for twice differentiable convex functions whose second derivatives in absolute value are strongly \((\alpha ,m )\)-convex. We obtain new bounds using the H\(\ddot{o}\)lder and power mean inequalities. Moreover, we provide suitable examples in support of our theoretical results. We correlate our findings with comparable results in the literature and show that the obtained results are refinements and improvements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信