用伽勒金谱法和有限差分法求解具有弱奇异内核的四阶时间分式偏积分微分方程

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Hoorieh Fakhari, Akbar Mohebbi
{"title":"用伽勒金谱法和有限差分法求解具有弱奇异内核的四阶时间分式偏积分微分方程","authors":"Hoorieh Fakhari, Akbar Mohebbi","doi":"10.1007/s12190-024-02173-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose an efficient numerical algorithm for the solution of fourth-order time fractional partial integro-differential equation with a weakly singular kernel. In time direction, we use second-order finite difference schemes to discretize the Caputo fractional derivative and also singular integral term. To achieve fully discrete scheme, we apply Galerkin method using generalized Jacobi polynomials as basis, which satisfy essentially all the underlying homogeneous boundary conditions. The proposed method is fast and efficient due to the resulting sparse coefficient matrices. We investigate the error estimate and prove that the method is convergent. Numerical results show the high accuracy and low CPU time of proposed method and confirmed the theoretical ones. Second-order accuracy in time direction and spectral accuracy in space component are also numerically demonstrated by some test problems. Finally we compare the numerical results with the results of other recently methods developed in literature.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Galerkin spectral and finite difference methods for the solution of fourth-order time fractional partial integro-differential equation with a weakly singular kernel\",\"authors\":\"Hoorieh Fakhari, Akbar Mohebbi\",\"doi\":\"10.1007/s12190-024-02173-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we propose an efficient numerical algorithm for the solution of fourth-order time fractional partial integro-differential equation with a weakly singular kernel. In time direction, we use second-order finite difference schemes to discretize the Caputo fractional derivative and also singular integral term. To achieve fully discrete scheme, we apply Galerkin method using generalized Jacobi polynomials as basis, which satisfy essentially all the underlying homogeneous boundary conditions. The proposed method is fast and efficient due to the resulting sparse coefficient matrices. We investigate the error estimate and prove that the method is convergent. Numerical results show the high accuracy and low CPU time of proposed method and confirmed the theoretical ones. Second-order accuracy in time direction and spectral accuracy in space component are also numerically demonstrated by some test problems. Finally we compare the numerical results with the results of other recently methods developed in literature.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12190-024-02173-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12190-024-02173-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种高效的数值算法,用于求解具有弱奇异内核的四阶时间分式偏积分微分方程。在时间方向上,我们使用二阶有限差分方案来离散 Caputo 分导数和奇异积分项。为了实现完全离散方案,我们采用了 Galerkin 方法,以广义雅可比多项式为基础,基本上满足了所有潜在的同质边界条件。由于所得到的系数矩阵稀疏,因此所提出的方法既快速又高效。我们对误差估计进行了研究,并证明该方法是收敛的。数值结果表明了所提方法的高精度和低 CPU 时间,并证实了理论结果。我们还通过一些测试问题数值证明了时间方向的二阶精度和空间分量的频谱精度。最后,我们将数值结果与文献中最近开发的其他方法的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Galerkin spectral and finite difference methods for the solution of fourth-order time fractional partial integro-differential equation with a weakly singular kernel

Galerkin spectral and finite difference methods for the solution of fourth-order time fractional partial integro-differential equation with a weakly singular kernel

In this paper, we propose an efficient numerical algorithm for the solution of fourth-order time fractional partial integro-differential equation with a weakly singular kernel. In time direction, we use second-order finite difference schemes to discretize the Caputo fractional derivative and also singular integral term. To achieve fully discrete scheme, we apply Galerkin method using generalized Jacobi polynomials as basis, which satisfy essentially all the underlying homogeneous boundary conditions. The proposed method is fast and efficient due to the resulting sparse coefficient matrices. We investigate the error estimate and prove that the method is convergent. Numerical results show the high accuracy and low CPU time of proposed method and confirmed the theoretical ones. Second-order accuracy in time direction and spectral accuracy in space component are also numerically demonstrated by some test problems. Finally we compare the numerical results with the results of other recently methods developed in literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信