介于贝雷津半径和贝雷津规范之间的新半规范族

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Mojtaba Bakherad, Cristian Conde, Fuad Kittaneh
{"title":"介于贝雷津半径和贝雷津规范之间的新半规范族","authors":"Mojtaba Bakherad,&nbsp;Cristian Conde,&nbsp;Fuad Kittaneh","doi":"10.1007/s10440-024-00667-w","DOIUrl":null,"url":null,"abstract":"<div><p>A functional Hilbert space is the Hilbert space ℋ of complex-valued functions on some set <span>\\(\\Theta \\subseteq \\mathbb{C}\\)</span> such that the evaluation functionals <span>\\(\\varphi _{\\tau }\\left ( f\\right ) =f\\left ( \\tau \\right ) \\)</span>, <span>\\(\\tau \\in \\Theta \\)</span>, are continuous on ℋ. The Berezin number of an operator <span>\\(X\\)</span> is defined by <span>\\(\\mathbf{ber}(X)=\\underset{\\tau \\in {\\Theta } }{\\sup }\\big \\vert \\widetilde{X}(\\tau )\\big \\vert = \\underset{\\tau \\in {\\Theta } }{\\sup }\\big \\vert \\langle X\\hat{k}_{\\tau },\\hat{k}_{\\tau }\\rangle \\big \\vert \\)</span>, where the operator <span>\\(X\\)</span> acts on the reproducing kernel Hilbert space <span>\\({\\mathscr{H}}={\\mathscr{H}(}\\Theta )\\)</span> over some (non-empty) set <span>\\(\\Theta \\)</span>. In this paper, we introduce a new family involving means <span>\\(\\Vert \\cdot \\Vert _{\\sigma _{t}}\\)</span> between the Berezin radius and the Berezin norm. Among other results, it is shown that if <span>\\(X\\in {\\mathscr{L}}({\\mathscr{H}})\\)</span> and <span>\\(f\\)</span>, <span>\\(g\\)</span> are two non-negative continuous functions defined on <span>\\([0,\\infty )\\)</span> such that <span>\\(f(t)g(t) = t,\\,(t\\geqslant 0)\\)</span>, then </p><div><div><span> $$\\begin{aligned} \\Vert X\\Vert ^{2}_{\\sigma }\\leqslant \\textbf{ber}\\left (\\frac{1}{4}(f^{4}( \\vert X\\vert )+g^{4}(\\vert X^{*}\\vert ))+\\frac{1}{2}\\vert X\\vert ^{2} \\right ) \\end{aligned}$$ </span></div></div><p> and </p><div><div><span> $$\\begin{aligned} \\Vert X\\Vert ^{2}_{\\sigma }\\leqslant \\frac{1}{2}\\sqrt{\\textbf{ber} \\left (f^{4}(\\vert X\\vert )+g^{2}(\\vert X\\vert ^{2})\\right ) \\textbf{ber}\\left (f^{2}(\\vert X\\vert ^{2})+g^{4}(\\vert X^{*}\\vert ) \\right )}, \\end{aligned}$$ </span></div></div><p> where <span>\\(\\sigma \\)</span> is a mean dominated by the arithmetic mean <span>\\(\\nabla \\)</span>.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"192 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Family of Semi-Norms Between the Berezin Radius and the Berezin Norm\",\"authors\":\"Mojtaba Bakherad,&nbsp;Cristian Conde,&nbsp;Fuad Kittaneh\",\"doi\":\"10.1007/s10440-024-00667-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A functional Hilbert space is the Hilbert space ℋ of complex-valued functions on some set <span>\\\\(\\\\Theta \\\\subseteq \\\\mathbb{C}\\\\)</span> such that the evaluation functionals <span>\\\\(\\\\varphi _{\\\\tau }\\\\left ( f\\\\right ) =f\\\\left ( \\\\tau \\\\right ) \\\\)</span>, <span>\\\\(\\\\tau \\\\in \\\\Theta \\\\)</span>, are continuous on ℋ. The Berezin number of an operator <span>\\\\(X\\\\)</span> is defined by <span>\\\\(\\\\mathbf{ber}(X)=\\\\underset{\\\\tau \\\\in {\\\\Theta } }{\\\\sup }\\\\big \\\\vert \\\\widetilde{X}(\\\\tau )\\\\big \\\\vert = \\\\underset{\\\\tau \\\\in {\\\\Theta } }{\\\\sup }\\\\big \\\\vert \\\\langle X\\\\hat{k}_{\\\\tau },\\\\hat{k}_{\\\\tau }\\\\rangle \\\\big \\\\vert \\\\)</span>, where the operator <span>\\\\(X\\\\)</span> acts on the reproducing kernel Hilbert space <span>\\\\({\\\\mathscr{H}}={\\\\mathscr{H}(}\\\\Theta )\\\\)</span> over some (non-empty) set <span>\\\\(\\\\Theta \\\\)</span>. In this paper, we introduce a new family involving means <span>\\\\(\\\\Vert \\\\cdot \\\\Vert _{\\\\sigma _{t}}\\\\)</span> between the Berezin radius and the Berezin norm. Among other results, it is shown that if <span>\\\\(X\\\\in {\\\\mathscr{L}}({\\\\mathscr{H}})\\\\)</span> and <span>\\\\(f\\\\)</span>, <span>\\\\(g\\\\)</span> are two non-negative continuous functions defined on <span>\\\\([0,\\\\infty )\\\\)</span> such that <span>\\\\(f(t)g(t) = t,\\\\,(t\\\\geqslant 0)\\\\)</span>, then </p><div><div><span> $$\\\\begin{aligned} \\\\Vert X\\\\Vert ^{2}_{\\\\sigma }\\\\leqslant \\\\textbf{ber}\\\\left (\\\\frac{1}{4}(f^{4}( \\\\vert X\\\\vert )+g^{4}(\\\\vert X^{*}\\\\vert ))+\\\\frac{1}{2}\\\\vert X\\\\vert ^{2} \\\\right ) \\\\end{aligned}$$ </span></div></div><p> and </p><div><div><span> $$\\\\begin{aligned} \\\\Vert X\\\\Vert ^{2}_{\\\\sigma }\\\\leqslant \\\\frac{1}{2}\\\\sqrt{\\\\textbf{ber} \\\\left (f^{4}(\\\\vert X\\\\vert )+g^{2}(\\\\vert X\\\\vert ^{2})\\\\right ) \\\\textbf{ber}\\\\left (f^{2}(\\\\vert X\\\\vert ^{2})+g^{4}(\\\\vert X^{*}\\\\vert ) \\\\right )}, \\\\end{aligned}$$ </span></div></div><p> where <span>\\\\(\\\\sigma \\\\)</span> is a mean dominated by the arithmetic mean <span>\\\\(\\\\nabla \\\\)</span>.</p></div>\",\"PeriodicalId\":53132,\"journal\":{\"name\":\"Acta Applicandae Mathematicae\",\"volume\":\"192 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Applicandae Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10440-024-00667-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-024-00667-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

函数式希尔伯特空间是某个集合 \(\Theta \subseteq \mathbb{C}\)上的复值函数的希尔伯特空间ℋ,使得在ℋ上的评估函数 \(\varphi _{tau }\left ( f\right ) =f\left ( \tau \right ) \)、 \(\tau \in \Theta \)是连续的。一个算子 \(X\) 的贝雷津数定义为 \(\mathbf{ber}(X)=\underset{tau \ in {\Theta } }{sup }\b\widetilde{X}(\tau)\big\vert = \underset{tau \in {\Theta }其中算子\(X\)作用于某个(非空)集合\(\Theta\)上的重现核希尔伯特空间({\mathscr{H}={mathscr{H}(}\Theta)\)。在本文中,我们在贝雷津半径和贝雷津规范之间引入了一个涉及手段 \(\Vert \cdot \Vert _{\sigma _{t}}\) 的新族。在其他结果中,我们发现如果 \(X\in {\mathscr{L}}({\mathscr{H}})\) 和 \(f\), \(g\) 是定义在 \([0,\infty )\) 上的两个非负连续函数,使得 \(f(t)g(t) = t,\,(t\geqslant 0)\),那么 $$$begin{aligned}。\Vert X\Vert ^{2}_{\sigma }\leqslant \textbf{ber}\left (\frac{1}{4}(f^{4}( \vert X\vert )+g^{4}(\vert X^{*}\vert ))+\frac{1}{2}\vert X\vert ^{2}\right )\right )\end{aligned}$$ 和 $$\begin{aligned}\X\Vert ^{2}_{sigma }\leqslant \frac{1}{2}\sqrt\textbf{ber}\left (f^{4}(\vert X\vert )+g^{2}(\vert X\vert ^{2})\right )\textbf{ber}\left (f^{2}(\vert X\vert ^{2})+g^{4}(\vert X^{*}\vert ) \right )}, \end{aligned}$$ 其中 \(\sigma \)是由算术平均数 \(\nabla \)支配的平均数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Family of Semi-Norms Between the Berezin Radius and the Berezin Norm

A functional Hilbert space is the Hilbert space ℋ of complex-valued functions on some set \(\Theta \subseteq \mathbb{C}\) such that the evaluation functionals \(\varphi _{\tau }\left ( f\right ) =f\left ( \tau \right ) \), \(\tau \in \Theta \), are continuous on ℋ. The Berezin number of an operator \(X\) is defined by \(\mathbf{ber}(X)=\underset{\tau \in {\Theta } }{\sup }\big \vert \widetilde{X}(\tau )\big \vert = \underset{\tau \in {\Theta } }{\sup }\big \vert \langle X\hat{k}_{\tau },\hat{k}_{\tau }\rangle \big \vert \), where the operator \(X\) acts on the reproducing kernel Hilbert space \({\mathscr{H}}={\mathscr{H}(}\Theta )\) over some (non-empty) set \(\Theta \). In this paper, we introduce a new family involving means \(\Vert \cdot \Vert _{\sigma _{t}}\) between the Berezin radius and the Berezin norm. Among other results, it is shown that if \(X\in {\mathscr{L}}({\mathscr{H}})\) and \(f\), \(g\) are two non-negative continuous functions defined on \([0,\infty )\) such that \(f(t)g(t) = t,\,(t\geqslant 0)\), then

$$\begin{aligned} \Vert X\Vert ^{2}_{\sigma }\leqslant \textbf{ber}\left (\frac{1}{4}(f^{4}( \vert X\vert )+g^{4}(\vert X^{*}\vert ))+\frac{1}{2}\vert X\vert ^{2} \right ) \end{aligned}$$

and

$$\begin{aligned} \Vert X\Vert ^{2}_{\sigma }\leqslant \frac{1}{2}\sqrt{\textbf{ber} \left (f^{4}(\vert X\vert )+g^{2}(\vert X\vert ^{2})\right ) \textbf{ber}\left (f^{2}(\vert X\vert ^{2})+g^{4}(\vert X^{*}\vert ) \right )}, \end{aligned}$$

where \(\sigma \) is a mean dominated by the arithmetic mean \(\nabla \).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信