跟踪片断静止序列的平均值

Ghurumuruhan Ganesan
{"title":"跟踪片断静止序列的平均值","authors":"Ghurumuruhan Ganesan","doi":"10.1007/s13226-024-00641-0","DOIUrl":null,"url":null,"abstract":"<p>In this paper we study the problem of tracking the mean of a piecewise stationary sequence of independent random variables. First we consider the case where the transition times are known and show that a direct running average performs the tracking in short time and with high accuracy. We then use a single valued weighted running average with a tunable parameter for the case when transition times are unknown and establish deviation bounds for the tracking accuracy. Our result has applications in choosing the optimal rewards for the multiarmed bandit scenario.</p>","PeriodicalId":501427,"journal":{"name":"Indian Journal of Pure and Applied Mathematics","volume":"745 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tracking the mean of a piecewise stationary sequence\",\"authors\":\"Ghurumuruhan Ganesan\",\"doi\":\"10.1007/s13226-024-00641-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we study the problem of tracking the mean of a piecewise stationary sequence of independent random variables. First we consider the case where the transition times are known and show that a direct running average performs the tracking in short time and with high accuracy. We then use a single valued weighted running average with a tunable parameter for the case when transition times are unknown and establish deviation bounds for the tracking accuracy. Our result has applications in choosing the optimal rewards for the multiarmed bandit scenario.</p>\",\"PeriodicalId\":501427,\"journal\":{\"name\":\"Indian Journal of Pure and Applied Mathematics\",\"volume\":\"745 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13226-024-00641-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13226-024-00641-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了独立随机变量片断静止序列均值的跟踪问题。首先,我们考虑了过渡时间已知的情况,并证明直接运行平均法能在短时间内高精度地完成跟踪。然后,我们在过渡时间未知的情况下使用带有可调参数的单值加权运行平均法,并建立了跟踪精度的偏差边界。我们的结果可应用于选择多臂强盗方案的最优奖励。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tracking the mean of a piecewise stationary sequence

In this paper we study the problem of tracking the mean of a piecewise stationary sequence of independent random variables. First we consider the case where the transition times are known and show that a direct running average performs the tracking in short time and with high accuracy. We then use a single valued weighted running average with a tunable parameter for the case when transition times are unknown and establish deviation bounds for the tracking accuracy. Our result has applications in choosing the optimal rewards for the multiarmed bandit scenario.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信