A. M. Smetanina, S. A. Gromov, V. A. Obolkin, T. V. Khodzher, O. I. Khuriganova
{"title":"贝加尔地区大气臭氧再分析和地面测量评估","authors":"A. M. Smetanina, S. A. Gromov, V. A. Obolkin, T. V. Khodzher, O. I. Khuriganova","doi":"10.3103/s1068373924040113","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The machine learning model used to predict ozone concentrations at the Listvyanka monitoring station in the Baikal region is described. The model was trained and verified using automatic ground-based gas analyzer ozone measurements. Random forest and boosting machine learning models were used. According to the ERA5 reanalysis, the mean absolute error of ozone values exceeds 16 ppb, and the mean percentage error is 80%. The respective errors in the ozone values calculated using machine learning models are 6.7 ppb and 29%. The results of forecasting are the most sensitive to the season, air temperature, and vegetation. The ozone values for 2017–2022 were simulated and analyzed using the trained model and reanalysis data.</p>","PeriodicalId":49581,"journal":{"name":"Russian Meteorology and Hydrology","volume":"128 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of Atmospheric Ozone from Reanalysis and Ground-based Measurements in the Baikal Region\",\"authors\":\"A. M. Smetanina, S. A. Gromov, V. A. Obolkin, T. V. Khodzher, O. I. Khuriganova\",\"doi\":\"10.3103/s1068373924040113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The machine learning model used to predict ozone concentrations at the Listvyanka monitoring station in the Baikal region is described. The model was trained and verified using automatic ground-based gas analyzer ozone measurements. Random forest and boosting machine learning models were used. According to the ERA5 reanalysis, the mean absolute error of ozone values exceeds 16 ppb, and the mean percentage error is 80%. The respective errors in the ozone values calculated using machine learning models are 6.7 ppb and 29%. The results of forecasting are the most sensitive to the season, air temperature, and vegetation. The ozone values for 2017–2022 were simulated and analyzed using the trained model and reanalysis data.</p>\",\"PeriodicalId\":49581,\"journal\":{\"name\":\"Russian Meteorology and Hydrology\",\"volume\":\"128 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Meteorology and Hydrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3103/s1068373924040113\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Meteorology and Hydrology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3103/s1068373924040113","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Assessment of Atmospheric Ozone from Reanalysis and Ground-based Measurements in the Baikal Region
Abstract
The machine learning model used to predict ozone concentrations at the Listvyanka monitoring station in the Baikal region is described. The model was trained and verified using automatic ground-based gas analyzer ozone measurements. Random forest and boosting machine learning models were used. According to the ERA5 reanalysis, the mean absolute error of ozone values exceeds 16 ppb, and the mean percentage error is 80%. The respective errors in the ozone values calculated using machine learning models are 6.7 ppb and 29%. The results of forecasting are the most sensitive to the season, air temperature, and vegetation. The ozone values for 2017–2022 were simulated and analyzed using the trained model and reanalysis data.
期刊介绍:
Russian Meteorology and Hydrology is a peer reviewed journal that covers topical issues of hydrometeorological science and practice: methods of forecasting weather and hydrological phenomena, climate monitoring issues, environmental pollution, space hydrometeorology, agrometeorology.