{"title":"利用机器学习从地球静止卫星图像中探测面向对象的深对流的方法","authors":"A. E. Shishov","doi":"10.3103/s1068373924040071","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Due to high spatial and temporal resolution, geostationary meteorological satellite imagery is a valuable source of information on the development of deep convective clouds and related severe weather events. Some methods for automatic deep convection detection from satellite data provide a satisfactory probability of detection for independent datasets, but are characterized by a high false alarm rate. The paper gives a description of an algorithm for automatic detection of deep convective clouds with satellite imagery using gradient boosting, logistic regression, and artificial neural network models. The results of validation of the proposed method using dependent and independent data of ground-based observations for the period 2013–2020 are presented. A low false alarm rate and high probability of detection suggest that the algorithm can be used in the operational mode.</p>","PeriodicalId":49581,"journal":{"name":"Russian Meteorology and Hydrology","volume":"70 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Method for Object-oriented Detection of Deep Convection from Geostationary Satellite Imagery Using Machine Learning\",\"authors\":\"A. E. Shishov\",\"doi\":\"10.3103/s1068373924040071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Due to high spatial and temporal resolution, geostationary meteorological satellite imagery is a valuable source of information on the development of deep convective clouds and related severe weather events. Some methods for automatic deep convection detection from satellite data provide a satisfactory probability of detection for independent datasets, but are characterized by a high false alarm rate. The paper gives a description of an algorithm for automatic detection of deep convective clouds with satellite imagery using gradient boosting, logistic regression, and artificial neural network models. The results of validation of the proposed method using dependent and independent data of ground-based observations for the period 2013–2020 are presented. A low false alarm rate and high probability of detection suggest that the algorithm can be used in the operational mode.</p>\",\"PeriodicalId\":49581,\"journal\":{\"name\":\"Russian Meteorology and Hydrology\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Meteorology and Hydrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3103/s1068373924040071\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Meteorology and Hydrology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3103/s1068373924040071","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
A Method for Object-oriented Detection of Deep Convection from Geostationary Satellite Imagery Using Machine Learning
Abstract
Due to high spatial and temporal resolution, geostationary meteorological satellite imagery is a valuable source of information on the development of deep convective clouds and related severe weather events. Some methods for automatic deep convection detection from satellite data provide a satisfactory probability of detection for independent datasets, but are characterized by a high false alarm rate. The paper gives a description of an algorithm for automatic detection of deep convective clouds with satellite imagery using gradient boosting, logistic regression, and artificial neural network models. The results of validation of the proposed method using dependent and independent data of ground-based observations for the period 2013–2020 are presented. A low false alarm rate and high probability of detection suggest that the algorithm can be used in the operational mode.
期刊介绍:
Russian Meteorology and Hydrology is a peer reviewed journal that covers topical issues of hydrometeorological science and practice: methods of forecasting weather and hydrological phenomena, climate monitoring issues, environmental pollution, space hydrometeorology, agrometeorology.