{"title":"以木苹果壳颗粒为填料制备文竹英纤维生物复合材料:碱处理的影响和物理力学性能的成分优化","authors":"Maheskumar Ponnuswamy, Thottyeapalayam Palanisamy Sathishkumar, Mayakannan Selvaraju, Venkatesa Prabhu Sundramurthy","doi":"10.1007/s13369-024-09253-6","DOIUrl":null,"url":null,"abstract":"<p>In polymer matrix composites (PMCs), reinforced lignocellulosic fibres are one of the excellent endeavours; doing so eliminates the need for the more commonplace synthetic fibres. In this respect, the fibres from <i>Enset ventricosum</i> (EV), one of the underutilized which have not been studied extensively, were focused to carry out an investigation on PMCs applications using the particles of <i>Limonia acidissima</i> fruit shell powder (LASP) as reinforcing agent. The study set out to evaluate the adeptness of altered LASP and EV plant fibres by 4% NaOH treatment. The results from morphological, physicochemical, XRD, FTIR, and thermal aspects of alkali-treated samples of LASP and EV fibres revealed that the alkali treatment significantly improved the compatibility of biomaterial’ property to utilize the natural fillers in the epoxy–EV fibre composites. The first-degree polynomial model was fitted using the response surface analysis to optimize the impact energy, water absorption, tensile, and flexural strength of reinforced fibre with respect to composition and fibre length. Using RSM numerical model, aforementioned properties were analysed to develop the ideal epoxy–EV fibre composite for attaining a minimal water absorption, a high tensile modulus, flexural strength, and impact energy. Accordingly, 3 mm of fibre length reinforcement with 38.3 wt % of biomaterials loading reinforcement was found to be optimized for idealistic epoxy–EV fibre composite.</p>","PeriodicalId":8109,"journal":{"name":"Arabian Journal for Science and Engineering","volume":"36 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enset ventricosum Fibre-Based Biocomposite Preparation with Wood Apple Shell Particles as a Filler: Effect of Alkali Treatment and Optimization of Composition for Physio-Mechanical Properties\",\"authors\":\"Maheskumar Ponnuswamy, Thottyeapalayam Palanisamy Sathishkumar, Mayakannan Selvaraju, Venkatesa Prabhu Sundramurthy\",\"doi\":\"10.1007/s13369-024-09253-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In polymer matrix composites (PMCs), reinforced lignocellulosic fibres are one of the excellent endeavours; doing so eliminates the need for the more commonplace synthetic fibres. In this respect, the fibres from <i>Enset ventricosum</i> (EV), one of the underutilized which have not been studied extensively, were focused to carry out an investigation on PMCs applications using the particles of <i>Limonia acidissima</i> fruit shell powder (LASP) as reinforcing agent. The study set out to evaluate the adeptness of altered LASP and EV plant fibres by 4% NaOH treatment. The results from morphological, physicochemical, XRD, FTIR, and thermal aspects of alkali-treated samples of LASP and EV fibres revealed that the alkali treatment significantly improved the compatibility of biomaterial’ property to utilize the natural fillers in the epoxy–EV fibre composites. The first-degree polynomial model was fitted using the response surface analysis to optimize the impact energy, water absorption, tensile, and flexural strength of reinforced fibre with respect to composition and fibre length. Using RSM numerical model, aforementioned properties were analysed to develop the ideal epoxy–EV fibre composite for attaining a minimal water absorption, a high tensile modulus, flexural strength, and impact energy. Accordingly, 3 mm of fibre length reinforcement with 38.3 wt % of biomaterials loading reinforcement was found to be optimized for idealistic epoxy–EV fibre composite.</p>\",\"PeriodicalId\":8109,\"journal\":{\"name\":\"Arabian Journal for Science and Engineering\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arabian Journal for Science and Engineering\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1007/s13369-024-09253-6\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal for Science and Engineering","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1007/s13369-024-09253-6","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
Enset ventricosum Fibre-Based Biocomposite Preparation with Wood Apple Shell Particles as a Filler: Effect of Alkali Treatment and Optimization of Composition for Physio-Mechanical Properties
In polymer matrix composites (PMCs), reinforced lignocellulosic fibres are one of the excellent endeavours; doing so eliminates the need for the more commonplace synthetic fibres. In this respect, the fibres from Enset ventricosum (EV), one of the underutilized which have not been studied extensively, were focused to carry out an investigation on PMCs applications using the particles of Limonia acidissima fruit shell powder (LASP) as reinforcing agent. The study set out to evaluate the adeptness of altered LASP and EV plant fibres by 4% NaOH treatment. The results from morphological, physicochemical, XRD, FTIR, and thermal aspects of alkali-treated samples of LASP and EV fibres revealed that the alkali treatment significantly improved the compatibility of biomaterial’ property to utilize the natural fillers in the epoxy–EV fibre composites. The first-degree polynomial model was fitted using the response surface analysis to optimize the impact energy, water absorption, tensile, and flexural strength of reinforced fibre with respect to composition and fibre length. Using RSM numerical model, aforementioned properties were analysed to develop the ideal epoxy–EV fibre composite for attaining a minimal water absorption, a high tensile modulus, flexural strength, and impact energy. Accordingly, 3 mm of fibre length reinforcement with 38.3 wt % of biomaterials loading reinforcement was found to be optimized for idealistic epoxy–EV fibre composite.
期刊介绍:
King Fahd University of Petroleum & Minerals (KFUPM) partnered with Springer to publish the Arabian Journal for Science and Engineering (AJSE).
AJSE, which has been published by KFUPM since 1975, is a recognized national, regional and international journal that provides a great opportunity for the dissemination of research advances from the Kingdom of Saudi Arabia, MENA and the world.