{"title":"戈伦斯坦法向曲面奇点的复元分类","authors":"András Némethi, Gergő Schefler","doi":"10.1007/s00209-024-03530-8","DOIUrl":null,"url":null,"abstract":"<p>Consider a complex normal surface singularity and its three plurigenera, the <i>m</i>-th <span>\\(L^2\\)</span>–plurigenus of Watanabe, the <i>m</i>-th plurigenus of Knöller and the <i>m</i>-th log-plurigenus of Morales. For any of these invariants we construct a double graded <span>\\(\\mathbb {Z}[U]\\)</span>–module, whose Euler characteristic is the chosen plurigenus. The three outputs are compared with the analytic lattice cohomology of the germ, whose Euler characteristic is the classical geometric genus.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"4 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Categorification of the plurigenera of Gorenstein normal surface singularities\",\"authors\":\"András Némethi, Gergő Schefler\",\"doi\":\"10.1007/s00209-024-03530-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Consider a complex normal surface singularity and its three plurigenera, the <i>m</i>-th <span>\\\\(L^2\\\\)</span>–plurigenus of Watanabe, the <i>m</i>-th plurigenus of Knöller and the <i>m</i>-th log-plurigenus of Morales. For any of these invariants we construct a double graded <span>\\\\(\\\\mathbb {Z}[U]\\\\)</span>–module, whose Euler characteristic is the chosen plurigenus. The three outputs are compared with the analytic lattice cohomology of the germ, whose Euler characteristic is the classical geometric genus.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03530-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03530-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Categorification of the plurigenera of Gorenstein normal surface singularities
Consider a complex normal surface singularity and its three plurigenera, the m-th \(L^2\)–plurigenus of Watanabe, the m-th plurigenus of Knöller and the m-th log-plurigenus of Morales. For any of these invariants we construct a double graded \(\mathbb {Z}[U]\)–module, whose Euler characteristic is the chosen plurigenus. The three outputs are compared with the analytic lattice cohomology of the germ, whose Euler characteristic is the classical geometric genus.