戈伦斯坦法向曲面奇点的复元分类

IF 1 3区 数学 Q1 MATHEMATICS
András Némethi, Gergő Schefler
{"title":"戈伦斯坦法向曲面奇点的复元分类","authors":"András Némethi, Gergő Schefler","doi":"10.1007/s00209-024-03530-8","DOIUrl":null,"url":null,"abstract":"<p>Consider a complex normal surface singularity and its three plurigenera, the <i>m</i>-th <span>\\(L^2\\)</span>–plurigenus of Watanabe, the <i>m</i>-th plurigenus of Knöller and the <i>m</i>-th log-plurigenus of Morales. For any of these invariants we construct a double graded <span>\\(\\mathbb {Z}[U]\\)</span>–module, whose Euler characteristic is the chosen plurigenus. The three outputs are compared with the analytic lattice cohomology of the germ, whose Euler characteristic is the classical geometric genus.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"4 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Categorification of the plurigenera of Gorenstein normal surface singularities\",\"authors\":\"András Némethi, Gergő Schefler\",\"doi\":\"10.1007/s00209-024-03530-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Consider a complex normal surface singularity and its three plurigenera, the <i>m</i>-th <span>\\\\(L^2\\\\)</span>–plurigenus of Watanabe, the <i>m</i>-th plurigenus of Knöller and the <i>m</i>-th log-plurigenus of Morales. For any of these invariants we construct a double graded <span>\\\\(\\\\mathbb {Z}[U]\\\\)</span>–module, whose Euler characteristic is the chosen plurigenus. The three outputs are compared with the analytic lattice cohomology of the germ, whose Euler characteristic is the classical geometric genus.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03530-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03530-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

考虑一个复正则面奇异性及其三个复元,即渡边(Watanabe)的第m个(L^2\)复元、诺勒(Knöller)的第m个复元和莫拉莱斯(Morales)的第m个对数复元。对于这些不变式中的任何一个,我们都会构造一个双分级(\mathbb {Z}[U]\ )模块,其欧拉特征就是所选的诸元。我们将这三个结果与胚芽的解析晶格同调进行比较,后者的欧拉特征是经典几何属。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Categorification of the plurigenera of Gorenstein normal surface singularities

Consider a complex normal surface singularity and its three plurigenera, the m-th \(L^2\)–plurigenus of Watanabe, the m-th plurigenus of Knöller and the m-th log-plurigenus of Morales. For any of these invariants we construct a double graded \(\mathbb {Z}[U]\)–module, whose Euler characteristic is the chosen plurigenus. The three outputs are compared with the analytic lattice cohomology of the germ, whose Euler characteristic is the classical geometric genus.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信