{"title":"各向异性局部哈代空间和不均匀特里贝尔-利佐金空间的分类","authors":"Jordy Timo van Velthoven, Felix Voigtlaender","doi":"10.1007/s00209-024-03538-0","DOIUrl":null,"url":null,"abstract":"<p>This paper provides a characterization of when two expansive matrices yield the same anisotropic local Hardy and inhomogeneous Triebel–Lizorkin spaces. The characterization is in terms of the coarse equivalence of certain quasi-norms associated to the matrices. For nondiagonal matrices, these conditions are strictly weaker than those classifying the coincidence of the corresponding homogeneous function spaces. The obtained results complete the classification of anisotropic Besov and Triebel–Lizorkin spaces associated to general expansive matrices.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"356 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of anisotropic local Hardy spaces and inhomogeneous Triebel–Lizorkin spaces\",\"authors\":\"Jordy Timo van Velthoven, Felix Voigtlaender\",\"doi\":\"10.1007/s00209-024-03538-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper provides a characterization of when two expansive matrices yield the same anisotropic local Hardy and inhomogeneous Triebel–Lizorkin spaces. The characterization is in terms of the coarse equivalence of certain quasi-norms associated to the matrices. For nondiagonal matrices, these conditions are strictly weaker than those classifying the coincidence of the corresponding homogeneous function spaces. The obtained results complete the classification of anisotropic Besov and Triebel–Lizorkin spaces associated to general expansive matrices.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"356 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03538-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03538-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Classification of anisotropic local Hardy spaces and inhomogeneous Triebel–Lizorkin spaces
This paper provides a characterization of when two expansive matrices yield the same anisotropic local Hardy and inhomogeneous Triebel–Lizorkin spaces. The characterization is in terms of the coarse equivalence of certain quasi-norms associated to the matrices. For nondiagonal matrices, these conditions are strictly weaker than those classifying the coincidence of the corresponding homogeneous function spaces. The obtained results complete the classification of anisotropic Besov and Triebel–Lizorkin spaces associated to general expansive matrices.