各向异性局部哈代空间和不均匀特里贝尔-利佐金空间的分类

IF 1 3区 数学 Q1 MATHEMATICS
Jordy Timo van Velthoven, Felix Voigtlaender
{"title":"各向异性局部哈代空间和不均匀特里贝尔-利佐金空间的分类","authors":"Jordy Timo van Velthoven, Felix Voigtlaender","doi":"10.1007/s00209-024-03538-0","DOIUrl":null,"url":null,"abstract":"<p>This paper provides a characterization of when two expansive matrices yield the same anisotropic local Hardy and inhomogeneous Triebel–Lizorkin spaces. The characterization is in terms of the coarse equivalence of certain quasi-norms associated to the matrices. For nondiagonal matrices, these conditions are strictly weaker than those classifying the coincidence of the corresponding homogeneous function spaces. The obtained results complete the classification of anisotropic Besov and Triebel–Lizorkin spaces associated to general expansive matrices.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"356 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of anisotropic local Hardy spaces and inhomogeneous Triebel–Lizorkin spaces\",\"authors\":\"Jordy Timo van Velthoven, Felix Voigtlaender\",\"doi\":\"10.1007/s00209-024-03538-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper provides a characterization of when two expansive matrices yield the same anisotropic local Hardy and inhomogeneous Triebel–Lizorkin spaces. The characterization is in terms of the coarse equivalence of certain quasi-norms associated to the matrices. For nondiagonal matrices, these conditions are strictly weaker than those classifying the coincidence of the corresponding homogeneous function spaces. The obtained results complete the classification of anisotropic Besov and Triebel–Lizorkin spaces associated to general expansive matrices.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"356 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03538-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03538-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文对两个膨胀矩阵产生相同的各向异性局部哈代和非均质特里贝尔-利佐金空间的情况进行了描述。该特征描述基于与矩阵相关的某些准矩阵的粗等价性。对于非对角矩阵,这些条件严格弱于相应同质函数空间的重合分类条件。所获得的结果完善了与一般膨胀矩阵相关的各向异性贝索夫空间和特里贝尔-利佐金空间的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of anisotropic local Hardy spaces and inhomogeneous Triebel–Lizorkin spaces

This paper provides a characterization of when two expansive matrices yield the same anisotropic local Hardy and inhomogeneous Triebel–Lizorkin spaces. The characterization is in terms of the coarse equivalence of certain quasi-norms associated to the matrices. For nondiagonal matrices, these conditions are strictly weaker than those classifying the coincidence of the corresponding homogeneous function spaces. The obtained results complete the classification of anisotropic Besov and Triebel–Lizorkin spaces associated to general expansive matrices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信