{"title":"初始数据接近有限间隙环的本杰明-奥诺方程某些扰动的内霍洛舍夫定理","authors":"Dario Bambusi, Patrick Gérard","doi":"10.1007/s00209-024-03539-z","DOIUrl":null,"url":null,"abstract":"<p>We consider a perturbation of the Benjamin Ono equation with periodic boundary conditions on a segment. We consider the case where the perturbation is Hamiltonian and the corresponding Hamiltonian vector field is analytic as a map from the energy space to itself. Let <span>\\(\\epsilon \\)</span> be the size of the perturbation. We prove that for initial data close in energy norm to an <i>N</i>-gap state of the unperturbed equation all the actions of the Benjamin Ono equation remain <span>\\({\\mathcal {O}}(\\epsilon ^{\\frac{1}{2(N+1)}})\\)</span> close to their initial value for times exponentially long with <span>\\(\\epsilon ^{-\\frac{1}{2(N+1)}}\\)</span>.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"32 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Nekhoroshev theorem for some perturbations of the Benjamin-Ono equation with initial data close to finite gap tori\",\"authors\":\"Dario Bambusi, Patrick Gérard\",\"doi\":\"10.1007/s00209-024-03539-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider a perturbation of the Benjamin Ono equation with periodic boundary conditions on a segment. We consider the case where the perturbation is Hamiltonian and the corresponding Hamiltonian vector field is analytic as a map from the energy space to itself. Let <span>\\\\(\\\\epsilon \\\\)</span> be the size of the perturbation. We prove that for initial data close in energy norm to an <i>N</i>-gap state of the unperturbed equation all the actions of the Benjamin Ono equation remain <span>\\\\({\\\\mathcal {O}}(\\\\epsilon ^{\\\\frac{1}{2(N+1)}})\\\\)</span> close to their initial value for times exponentially long with <span>\\\\(\\\\epsilon ^{-\\\\frac{1}{2(N+1)}}\\\\)</span>.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03539-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03539-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑的是本杰明-小野方程的扰动,其边界条件为一段周期性边界条件。我们考虑的情况是,扰动是哈密顿的,相应的哈密顿矢量场是从能量空间到自身的解析映射。让 \(\epsilon \) 是扰动的大小。我们证明,对于在能量规范上接近于未扰动方程的 N 隙状态的初始数据,本杰明-小野方程的所有作用在与\(\epsilon ^{-\frac{1}{2(N+1)}}\)成指数长的时间内都保持({mathcal {O}}(\epsilon ^{-\frac{1}{2(N+1)}}\)接近其初始值。)
A Nekhoroshev theorem for some perturbations of the Benjamin-Ono equation with initial data close to finite gap tori
We consider a perturbation of the Benjamin Ono equation with periodic boundary conditions on a segment. We consider the case where the perturbation is Hamiltonian and the corresponding Hamiltonian vector field is analytic as a map from the energy space to itself. Let \(\epsilon \) be the size of the perturbation. We prove that for initial data close in energy norm to an N-gap state of the unperturbed equation all the actions of the Benjamin Ono equation remain \({\mathcal {O}}(\epsilon ^{\frac{1}{2(N+1)}})\) close to their initial value for times exponentially long with \(\epsilon ^{-\frac{1}{2(N+1)}}\).