{"title":"非光滑域上的非局部能量函数和行列式点过程","authors":"Zhengjiang Lin","doi":"10.1007/s00209-024-03540-6","DOIUrl":null,"url":null,"abstract":"<p>Given a nonnegative integrable function <i>J</i> on <span>\\(\\mathbb {R}^n\\)</span>, we relate the asymptotic properties of the nonlocal energy functional </p><span>$$\\begin{aligned} \\int _{\\Omega } \\int _{\\Omega ^c} J \\bigg (\\frac{x-y}{t}\\bigg ) \\ dx dy \\end{aligned}$$</span><p>as <span>\\(t \\rightarrow 0^+\\)</span> with the boundary properties of a given domain <span>\\(\\Omega \\subset \\mathbb {R}^n\\)</span>, focusing mainly on domains with “rough” boundaries. Then, we apply these results to the fluctuations of many determinantal point processes, showing (under suitable hypotheses) that their variances measure the Minkowski dimension of <span>\\(\\partial \\Omega \\)</span>.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"242 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlocal energy functionals and determinantal point processes on non-smooth domains\",\"authors\":\"Zhengjiang Lin\",\"doi\":\"10.1007/s00209-024-03540-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a nonnegative integrable function <i>J</i> on <span>\\\\(\\\\mathbb {R}^n\\\\)</span>, we relate the asymptotic properties of the nonlocal energy functional </p><span>$$\\\\begin{aligned} \\\\int _{\\\\Omega } \\\\int _{\\\\Omega ^c} J \\\\bigg (\\\\frac{x-y}{t}\\\\bigg ) \\\\ dx dy \\\\end{aligned}$$</span><p>as <span>\\\\(t \\\\rightarrow 0^+\\\\)</span> with the boundary properties of a given domain <span>\\\\(\\\\Omega \\\\subset \\\\mathbb {R}^n\\\\)</span>, focusing mainly on domains with “rough” boundaries. Then, we apply these results to the fluctuations of many determinantal point processes, showing (under suitable hypotheses) that their variances measure the Minkowski dimension of <span>\\\\(\\\\partial \\\\Omega \\\\)</span>.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"242 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03540-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03540-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
as \(t \rightarrow 0^+\) with the boundary properties of a given domain \(\Omega \subset \mathbb {R}^n\), focusing mainly on domains with “rough” boundaries. Then, we apply these results to the fluctuations of many determinantal point processes, showing (under suitable hypotheses) that their variances measure the Minkowski dimension of \(\partial \Omega \).