鳗鱼和石斑鱼优化器:受自然启发的优化算法

Ali Mohammadzadeh, Seyedali Mirjalili
{"title":"鳗鱼和石斑鱼优化器:受自然启发的优化算法","authors":"Ali Mohammadzadeh, Seyedali Mirjalili","doi":"10.1007/s10586-024-04545-w","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes a meta-heuristic called Eel and Grouper Optimizer (EGO). The EGO algorithm is inspired by the symbiotic interaction and foraging strategy of eels and groupers in marine ecosystems. The algorithm’s efficacy is demonstrated through rigorous evaluation using nineteen benchmark functions, showcasing its superior performance compared to established meta-heuristic algorithms. The findings and results on the benchmark functions demonstrate that the EGO algorithm outperforms well-known meta-heuristics. This work also considers solving a wide range of real-world practical engineering case studies including tension/compression spring, pressure vessel, piston lever, and car side impact, and the CEC 2020 Real-World Benchmark using EGO to illustrate the practicality of the proposed algorithm when dealing with the challenges of real search spaces with unknown global optima. The results show that the proposed EGO algorithm is a reliable soft computing technique for real-world optimization problems and can efficiently outperform the existing algorithms in the literature.</p>","PeriodicalId":501576,"journal":{"name":"Cluster Computing","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eel and grouper optimizer: a nature-inspired optimization algorithm\",\"authors\":\"Ali Mohammadzadeh, Seyedali Mirjalili\",\"doi\":\"10.1007/s10586-024-04545-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper proposes a meta-heuristic called Eel and Grouper Optimizer (EGO). The EGO algorithm is inspired by the symbiotic interaction and foraging strategy of eels and groupers in marine ecosystems. The algorithm’s efficacy is demonstrated through rigorous evaluation using nineteen benchmark functions, showcasing its superior performance compared to established meta-heuristic algorithms. The findings and results on the benchmark functions demonstrate that the EGO algorithm outperforms well-known meta-heuristics. This work also considers solving a wide range of real-world practical engineering case studies including tension/compression spring, pressure vessel, piston lever, and car side impact, and the CEC 2020 Real-World Benchmark using EGO to illustrate the practicality of the proposed algorithm when dealing with the challenges of real search spaces with unknown global optima. The results show that the proposed EGO algorithm is a reliable soft computing technique for real-world optimization problems and can efficiently outperform the existing algorithms in the literature.</p>\",\"PeriodicalId\":501576,\"journal\":{\"name\":\"Cluster Computing\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10586-024-04545-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10586-024-04545-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种名为鳗鱼和石斑鱼优化器(EGO)的元启发式算法。EGO 算法的灵感来源于鳗鱼和石斑鱼在海洋生态系统中的共生互动和觅食策略。通过使用 19 个基准函数进行严格评估,该算法的功效得到了证明,与已有的元启发式算法相比,其性能更加优越。对基准函数的发现和结果表明,EGO 算法优于著名的元启发式算法。本研究还考虑使用 EGO 解决各种实际工程案例研究,包括拉伸/压缩弹簧、压力容器、活塞杆和汽车侧面撞击,以及 CEC 2020 真实世界基准,以说明所提算法在应对具有未知全局最优的真实搜索空间的挑战时的实用性。结果表明,所提出的 EGO 算法是一种可靠的软计算技术,适用于现实世界的优化问题,并能有效地超越文献中的现有算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Eel and grouper optimizer: a nature-inspired optimization algorithm

Eel and grouper optimizer: a nature-inspired optimization algorithm

This paper proposes a meta-heuristic called Eel and Grouper Optimizer (EGO). The EGO algorithm is inspired by the symbiotic interaction and foraging strategy of eels and groupers in marine ecosystems. The algorithm’s efficacy is demonstrated through rigorous evaluation using nineteen benchmark functions, showcasing its superior performance compared to established meta-heuristic algorithms. The findings and results on the benchmark functions demonstrate that the EGO algorithm outperforms well-known meta-heuristics. This work also considers solving a wide range of real-world practical engineering case studies including tension/compression spring, pressure vessel, piston lever, and car side impact, and the CEC 2020 Real-World Benchmark using EGO to illustrate the practicality of the proposed algorithm when dealing with the challenges of real search spaces with unknown global optima. The results show that the proposed EGO algorithm is a reliable soft computing technique for real-world optimization problems and can efficiently outperform the existing algorithms in the literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信