采用节能优化模型的节能建筑:热桥检测案例研究

Alparslan Fişne, M. Mücahit Enes Yurtsever, Süleyman Eken
{"title":"采用节能优化模型的节能建筑:热桥检测案例研究","authors":"Alparslan Fişne, M. Mücahit Enes Yurtsever, Süleyman Eken","doi":"10.1007/s10586-024-04624-y","DOIUrl":null,"url":null,"abstract":"<p>Thermographic inspection is particularly effective in identifying thermal bridges because it visualizes temperature differences on the building’s surface. The focus of this work is on energy-efficient computing for deep learning-based thermal bridge (anomaly) detection models. In this study, we concentrate on object detection-based models such as Mask R-CNN_FPN_50, Swin-T Transformer, and FSAF. We do benchmark tests on TBRR dataset with varying input sizes. To overcome the energy-efficient design, we apply optimizations such as compression, latency reduction, and pruning to these models. After our proposed improvements, the inference of the anomaly detection model, Mask R-CNN_FPN_50 with compression technique, is approximately 7.5% faster than the original. Also, more acceleration is observed in all models with increasing input size. Another criterion we focus on is total energy gain for optimized models. Swin-T transformer has the most inference energy gains for all input sizes (<span>\\(\\approx\\)</span>27 J for 3000 x 4000 and <span>\\(\\approx\\)</span>14 J for 2400 x 3400). In conclusion, our study presents an optimization of size, weight, and power for vision-based anomaly detection for buildings.</p>","PeriodicalId":501576,"journal":{"name":"Cluster Computing","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy-efficient buildings with energy-efficient optimized models: a case study on thermal bridge detection\",\"authors\":\"Alparslan Fişne, M. Mücahit Enes Yurtsever, Süleyman Eken\",\"doi\":\"10.1007/s10586-024-04624-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Thermographic inspection is particularly effective in identifying thermal bridges because it visualizes temperature differences on the building’s surface. The focus of this work is on energy-efficient computing for deep learning-based thermal bridge (anomaly) detection models. In this study, we concentrate on object detection-based models such as Mask R-CNN_FPN_50, Swin-T Transformer, and FSAF. We do benchmark tests on TBRR dataset with varying input sizes. To overcome the energy-efficient design, we apply optimizations such as compression, latency reduction, and pruning to these models. After our proposed improvements, the inference of the anomaly detection model, Mask R-CNN_FPN_50 with compression technique, is approximately 7.5% faster than the original. Also, more acceleration is observed in all models with increasing input size. Another criterion we focus on is total energy gain for optimized models. Swin-T transformer has the most inference energy gains for all input sizes (<span>\\\\(\\\\approx\\\\)</span>27 J for 3000 x 4000 and <span>\\\\(\\\\approx\\\\)</span>14 J for 2400 x 3400). In conclusion, our study presents an optimization of size, weight, and power for vision-based anomaly detection for buildings.</p>\",\"PeriodicalId\":501576,\"journal\":{\"name\":\"Cluster Computing\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10586-024-04624-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10586-024-04624-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

热成像检测在识别热桥方面尤为有效,因为它可以直观地显示建筑物表面的温差。这项工作的重点是基于深度学习的热桥(异常)检测模型的节能计算。在这项研究中,我们主要关注基于物体检测的模型,如 Mask R-CNN_FPN_50、Swin-T Transformer 和 FSAF。我们在不同输入大小的 TBRR 数据集上进行了基准测试。为了克服高能效设计,我们对这些模型进行了压缩、减少延迟和剪枝等优化。经过我们提出的改进后,采用压缩技术的异常检测模型 Mask R-CNN_FPN_50 的推理速度比原来快了约 7.5%。此外,随着输入大小的增加,所有模型的推理速度都有所加快。我们关注的另一个标准是优化模型的总能量增益。在所有输入尺寸下,Swin-T 变压器的推理能量增益最大(3000 x 4000 时为 27 J,2400 x 3400 时为 14 J)。总之,我们的研究提出了基于视觉的建筑物异常检测的尺寸、重量和功率优化方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Energy-efficient buildings with energy-efficient optimized models: a case study on thermal bridge detection

Energy-efficient buildings with energy-efficient optimized models: a case study on thermal bridge detection

Thermographic inspection is particularly effective in identifying thermal bridges because it visualizes temperature differences on the building’s surface. The focus of this work is on energy-efficient computing for deep learning-based thermal bridge (anomaly) detection models. In this study, we concentrate on object detection-based models such as Mask R-CNN_FPN_50, Swin-T Transformer, and FSAF. We do benchmark tests on TBRR dataset with varying input sizes. To overcome the energy-efficient design, we apply optimizations such as compression, latency reduction, and pruning to these models. After our proposed improvements, the inference of the anomaly detection model, Mask R-CNN_FPN_50 with compression technique, is approximately 7.5% faster than the original. Also, more acceleration is observed in all models with increasing input size. Another criterion we focus on is total energy gain for optimized models. Swin-T transformer has the most inference energy gains for all input sizes (\(\approx\)27 J for 3000 x 4000 and \(\approx\)14 J for 2400 x 3400). In conclusion, our study presents an optimization of size, weight, and power for vision-based anomaly detection for buildings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信