{"title":"用真空预加载法处理泥浆地面的两阶段组合过滤-固结模型","authors":"Xiaoqian Ye, Li Shi, Yuanqiang Cai","doi":"10.1002/nag.3804","DOIUrl":null,"url":null,"abstract":"<p>The vacuum preloading technique is extensively employed for ground improvement, particularly for slurry ground characterized by high-water content and low strength. Such ground frequently exhibits a delay in pore water pressure dissipation when treated with prefabricated vertical drains. To clarify the drainage and consolidation behaviour of high-water content slurry ground under vacuum preloading, this study proposed a two-stage combined model that integrates both filtration and consolidation processes. Initially, an axisymmetric filtration model was used to describe the formation of the soil column through the radial migration and compaction of the particles. The end-of-filtration radial distributions of void ratio, permeability coefficient, and effective pressure served as initial conditions for the consolidation stage analysis. This stage was depicted using a large strain consolidation model based on the free strain condition. The results showed the necessity of incorporating the filtration stage to capture the overall drainage mechanism and characteristics of slurry ground with vacuum preloading treatment.</p>","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A two-stage combined filtration-consolidation model for slurry ground treated by vacuum preloading\",\"authors\":\"Xiaoqian Ye, Li Shi, Yuanqiang Cai\",\"doi\":\"10.1002/nag.3804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The vacuum preloading technique is extensively employed for ground improvement, particularly for slurry ground characterized by high-water content and low strength. Such ground frequently exhibits a delay in pore water pressure dissipation when treated with prefabricated vertical drains. To clarify the drainage and consolidation behaviour of high-water content slurry ground under vacuum preloading, this study proposed a two-stage combined model that integrates both filtration and consolidation processes. Initially, an axisymmetric filtration model was used to describe the formation of the soil column through the radial migration and compaction of the particles. The end-of-filtration radial distributions of void ratio, permeability coefficient, and effective pressure served as initial conditions for the consolidation stage analysis. This stage was depicted using a large strain consolidation model based on the free strain condition. The results showed the necessity of incorporating the filtration stage to capture the overall drainage mechanism and characteristics of slurry ground with vacuum preloading treatment.</p>\",\"PeriodicalId\":13786,\"journal\":{\"name\":\"International Journal for Numerical and Analytical Methods in Geomechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical and Analytical Methods in Geomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/nag.3804\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical and Analytical Methods in Geomechanics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nag.3804","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
A two-stage combined filtration-consolidation model for slurry ground treated by vacuum preloading
The vacuum preloading technique is extensively employed for ground improvement, particularly for slurry ground characterized by high-water content and low strength. Such ground frequently exhibits a delay in pore water pressure dissipation when treated with prefabricated vertical drains. To clarify the drainage and consolidation behaviour of high-water content slurry ground under vacuum preloading, this study proposed a two-stage combined model that integrates both filtration and consolidation processes. Initially, an axisymmetric filtration model was used to describe the formation of the soil column through the radial migration and compaction of the particles. The end-of-filtration radial distributions of void ratio, permeability coefficient, and effective pressure served as initial conditions for the consolidation stage analysis. This stage was depicted using a large strain consolidation model based on the free strain condition. The results showed the necessity of incorporating the filtration stage to capture the overall drainage mechanism and characteristics of slurry ground with vacuum preloading treatment.
期刊介绍:
The journal welcomes manuscripts that substantially contribute to the understanding of the complex mechanical behaviour of geomaterials (soils, rocks, concrete, ice, snow, and powders), through innovative experimental techniques, and/or through the development of novel numerical or hybrid experimental/numerical modelling concepts in geomechanics. Topics of interest include instabilities and localization, interface and surface phenomena, fracture and failure, multi-physics and other time-dependent phenomena, micromechanics and multi-scale methods, and inverse analysis and stochastic methods. Papers related to energy and environmental issues are particularly welcome. The illustration of the proposed methods and techniques to engineering problems is encouraged. However, manuscripts dealing with applications of existing methods, or proposing incremental improvements to existing methods – in particular marginal extensions of existing analytical solutions or numerical methods – will not be considered for review.