Morgan Thomas, Mazen Ahmad, Gary Tresadern, Gianni de Fabritiis
{"title":"PromptSMILES:提示化学语言模型中的支架装饰和片段连接","authors":"Morgan Thomas, Mazen Ahmad, Gary Tresadern, Gianni de Fabritiis","doi":"10.1186/s13321-024-00866-5","DOIUrl":null,"url":null,"abstract":"<div><p>SMILES-based generative models are amongst the most robust and successful recent methods used to augment drug design. They are typically used for complete de novo generation, however, scaffold decoration and fragment linking applications are sometimes desirable which requires a different grammar, architecture, training dataset and therefore, re-training of a new model. In this work, we describe a simple procedure to conduct constrained molecule generation with a SMILES-based generative model to extend applicability to scaffold decoration and fragment linking by providing SMILES prompts, without the need for re-training. In combination with reinforcement learning, we show that pre-trained, decoder-only models adapt to these applications quickly and can further optimize molecule generation towards a specified objective. We compare the performance of this approach to a variety of orthogonal approaches and show that performance is comparable or better. For convenience, we provide an easy-to-use python package to facilitate model sampling which can be found on GitHub and the Python Package Index.</p><p><b>Scientific contribution</b></p><p>This novel method extends an autoregressive chemical language model to scaffold decoration and fragment linking scenarios. This doesn’t require re-training, the use of a bespoke grammar, or curation of a custom dataset, as commonly required by other approaches.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00866-5","citationCount":"0","resultStr":"{\"title\":\"PromptSMILES: prompting for scaffold decoration and fragment linking in chemical language models\",\"authors\":\"Morgan Thomas, Mazen Ahmad, Gary Tresadern, Gianni de Fabritiis\",\"doi\":\"10.1186/s13321-024-00866-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>SMILES-based generative models are amongst the most robust and successful recent methods used to augment drug design. They are typically used for complete de novo generation, however, scaffold decoration and fragment linking applications are sometimes desirable which requires a different grammar, architecture, training dataset and therefore, re-training of a new model. In this work, we describe a simple procedure to conduct constrained molecule generation with a SMILES-based generative model to extend applicability to scaffold decoration and fragment linking by providing SMILES prompts, without the need for re-training. In combination with reinforcement learning, we show that pre-trained, decoder-only models adapt to these applications quickly and can further optimize molecule generation towards a specified objective. We compare the performance of this approach to a variety of orthogonal approaches and show that performance is comparable or better. For convenience, we provide an easy-to-use python package to facilitate model sampling which can be found on GitHub and the Python Package Index.</p><p><b>Scientific contribution</b></p><p>This novel method extends an autoregressive chemical language model to scaffold decoration and fragment linking scenarios. This doesn’t require re-training, the use of a bespoke grammar, or curation of a custom dataset, as commonly required by other approaches.</p></div>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00866-5\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-024-00866-5\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00866-5","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
PromptSMILES: prompting for scaffold decoration and fragment linking in chemical language models
SMILES-based generative models are amongst the most robust and successful recent methods used to augment drug design. They are typically used for complete de novo generation, however, scaffold decoration and fragment linking applications are sometimes desirable which requires a different grammar, architecture, training dataset and therefore, re-training of a new model. In this work, we describe a simple procedure to conduct constrained molecule generation with a SMILES-based generative model to extend applicability to scaffold decoration and fragment linking by providing SMILES prompts, without the need for re-training. In combination with reinforcement learning, we show that pre-trained, decoder-only models adapt to these applications quickly and can further optimize molecule generation towards a specified objective. We compare the performance of this approach to a variety of orthogonal approaches and show that performance is comparable or better. For convenience, we provide an easy-to-use python package to facilitate model sampling which can be found on GitHub and the Python Package Index.
Scientific contribution
This novel method extends an autoregressive chemical language model to scaffold decoration and fragment linking scenarios. This doesn’t require re-training, the use of a bespoke grammar, or curation of a custom dataset, as commonly required by other approaches.
期刊介绍:
Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling.
Coverage includes, but is not limited to:
chemical information systems, software and databases, and molecular modelling,
chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases,
computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.