{"title":"无爪次立方图的注入边着色","authors":"Qing Cui, Zhenmeng Han","doi":"10.1007/s10878-024-01188-w","DOIUrl":null,"url":null,"abstract":"<p>An injective edge-coloring of a graph <i>G</i> is an edge-coloring of <i>G</i> such that any two edges that are at distance 2 or in a common triangle receive distinct colors. The injective chromatic index of <i>G</i> is the minimum number of colors needed to guarantee that <i>G</i> admits an injective edge-coloring. Ferdjallah, Kerdjoudj and Raspaud showed that the injective chromatic index of every subcubic graph is at most 8, and conjectured that 8 can be improved to 6. Kostochka, Raspaud and Xu further proved that every subcubic graph has the injective chromatic index at most 7, and every subcubic planar graph has the injective chromatic index at most 6. In this paper, we consider the injective edge-coloring of claw-free subcubic graphs. We show that every connected claw-free subcubic graph, apart from two exceptions, has the injective chromatic index at most 5. We also consider the list version of injective edge-coloring and prove that the list injective chromatic index of every claw-free subcubic graph is at most 6. Both results are sharp and strengthen a recent result of Yang and Wu which asserts that every claw-free subcubic graph has the injective chromatic index at most 6.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Injective edge-coloring of claw-free subcubic graphs\",\"authors\":\"Qing Cui, Zhenmeng Han\",\"doi\":\"10.1007/s10878-024-01188-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An injective edge-coloring of a graph <i>G</i> is an edge-coloring of <i>G</i> such that any two edges that are at distance 2 or in a common triangle receive distinct colors. The injective chromatic index of <i>G</i> is the minimum number of colors needed to guarantee that <i>G</i> admits an injective edge-coloring. Ferdjallah, Kerdjoudj and Raspaud showed that the injective chromatic index of every subcubic graph is at most 8, and conjectured that 8 can be improved to 6. Kostochka, Raspaud and Xu further proved that every subcubic graph has the injective chromatic index at most 7, and every subcubic planar graph has the injective chromatic index at most 6. In this paper, we consider the injective edge-coloring of claw-free subcubic graphs. We show that every connected claw-free subcubic graph, apart from two exceptions, has the injective chromatic index at most 5. We also consider the list version of injective edge-coloring and prove that the list injective chromatic index of every claw-free subcubic graph is at most 6. Both results are sharp and strengthen a recent result of Yang and Wu which asserts that every claw-free subcubic graph has the injective chromatic index at most 6.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10878-024-01188-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-024-01188-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
图 G 的注入边着色是指 G 的边着色,使得距离为 2 或位于共同三角形中的任意两条边都能得到不同的颜色。G 的注入色度指数是保证 G 允许注入边着色所需的最少颜色数。Ferdjallah、Kerdjoudj 和 Raspaud 证明了每个子立方图的注入色度指数最多为 8,并猜想 8 可以改进为 6。Kostochka、Raspaud 和 Xu 进一步证明了每个亚立方图的注入色度指数最多为 7,每个亚立方平面图的注入色度指数最多为 6。我们证明,除了两个例外,每个连通的无爪次立方图的注入色度指数最多为 5。我们还考虑了注入边着色的列表版本,并证明每个无爪次立方图的列表注入色度指数最多为 6。这两个结果都很尖锐,并加强了杨和吴的最新结果,即每个无爪次立方图的注入色度指数最多为 6。
Injective edge-coloring of claw-free subcubic graphs
An injective edge-coloring of a graph G is an edge-coloring of G such that any two edges that are at distance 2 or in a common triangle receive distinct colors. The injective chromatic index of G is the minimum number of colors needed to guarantee that G admits an injective edge-coloring. Ferdjallah, Kerdjoudj and Raspaud showed that the injective chromatic index of every subcubic graph is at most 8, and conjectured that 8 can be improved to 6. Kostochka, Raspaud and Xu further proved that every subcubic graph has the injective chromatic index at most 7, and every subcubic planar graph has the injective chromatic index at most 6. In this paper, we consider the injective edge-coloring of claw-free subcubic graphs. We show that every connected claw-free subcubic graph, apart from two exceptions, has the injective chromatic index at most 5. We also consider the list version of injective edge-coloring and prove that the list injective chromatic index of every claw-free subcubic graph is at most 6. Both results are sharp and strengthen a recent result of Yang and Wu which asserts that every claw-free subcubic graph has the injective chromatic index at most 6.