利用生成式神经网络计算自旋链的雷尼纠缠熵

Piotr Białas, Piotr Korcyl, Tomasz Stebel, Dawid Zapolski
{"title":"利用生成式神经网络计算自旋链的雷尼纠缠熵","authors":"Piotr Białas, Piotr Korcyl, Tomasz Stebel, Dawid Zapolski","doi":"arxiv-2406.06193","DOIUrl":null,"url":null,"abstract":"We describe a method to estimate R\\'enyi entanglement entropy of a spin\nsystem, which is based on the replica trick and generative neural networks with\nexplicit probability estimation. It can be extended to any spin system or\nlattice field theory. We demonstrate our method on a one-dimensional quantum\nIsing spin chain. As the generative model, we use a hierarchy of autoregressive\nnetworks, allowing us to simulate up to 32 spins. We calculate the second\nR\\'enyi entropy and its derivative and cross-check our results with the\nnumerical evaluation of entropy and results available in the literature.","PeriodicalId":501191,"journal":{"name":"arXiv - PHYS - High Energy Physics - Lattice","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rényi entanglement entropy of spin chain with Generative Neural Networks\",\"authors\":\"Piotr Białas, Piotr Korcyl, Tomasz Stebel, Dawid Zapolski\",\"doi\":\"arxiv-2406.06193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a method to estimate R\\\\'enyi entanglement entropy of a spin\\nsystem, which is based on the replica trick and generative neural networks with\\nexplicit probability estimation. It can be extended to any spin system or\\nlattice field theory. We demonstrate our method on a one-dimensional quantum\\nIsing spin chain. As the generative model, we use a hierarchy of autoregressive\\nnetworks, allowing us to simulate up to 32 spins. We calculate the second\\nR\\\\'enyi entropy and its derivative and cross-check our results with the\\nnumerical evaluation of entropy and results available in the literature.\",\"PeriodicalId\":501191,\"journal\":{\"name\":\"arXiv - PHYS - High Energy Physics - Lattice\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - High Energy Physics - Lattice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.06193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Lattice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.06193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了一种估算自旋系统 R\'enyi entanglement entropy 的方法,它基于复制技巧和具有显式概率估算的生成神经网络。它可以扩展到任何自旋系统或晶格场论。我们在一维量子自旋链上演示了我们的方法。作为生成模型,我们使用了自回归网络的层次结构,从而可以模拟多达 32 个自旋。我们计算了第二熵及其导数,并将我们的结果与熵的数值评估和文献中的结果进行了交叉检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rényi entanglement entropy of spin chain with Generative Neural Networks
We describe a method to estimate R\'enyi entanglement entropy of a spin system, which is based on the replica trick and generative neural networks with explicit probability estimation. It can be extended to any spin system or lattice field theory. We demonstrate our method on a one-dimensional quantum Ising spin chain. As the generative model, we use a hierarchy of autoregressive networks, allowing us to simulate up to 32 spins. We calculate the second R\'enyi entropy and its derivative and cross-check our results with the numerical evaluation of entropy and results available in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信