DeepUnifiedMom:通过多任务学习与多门专家混合构建统一的时间序列动量投资组合

Joel Ong, Dorien Herremans
{"title":"DeepUnifiedMom:通过多任务学习与多门专家混合构建统一的时间序列动量投资组合","authors":"Joel Ong, Dorien Herremans","doi":"arxiv-2406.08742","DOIUrl":null,"url":null,"abstract":"This paper introduces DeepUnifiedMom, a deep learning framework that enhances\nportfolio management through a multi-task learning approach and a multi-gate\nmixture of experts. The essence of DeepUnifiedMom lies in its ability to create\nunified momentum portfolios that incorporate the dynamics of time series\nmomentum across a spectrum of time frames, a feature often missing in\ntraditional momentum strategies. Our comprehensive backtesting, encompassing\ndiverse asset classes such as equity indexes, fixed income, foreign exchange,\nand commodities, demonstrates that DeepUnifiedMom consistently outperforms\nbenchmark models, even after factoring in transaction costs. This superior\nperformance underscores DeepUnifiedMom's capability to capture the full\nspectrum of momentum opportunities within financial markets. The findings\nhighlight DeepUnifiedMom as an effective tool for practitioners looking to\nexploit the entire range of momentum opportunities. It offers a compelling\nsolution for improving risk-adjusted returns and is a valuable strategy for\nnavigating the complexities of portfolio management.","PeriodicalId":501294,"journal":{"name":"arXiv - QuantFin - Computational Finance","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DeepUnifiedMom: Unified Time-series Momentum Portfolio Construction via Multi-Task Learning with Multi-Gate Mixture of Experts\",\"authors\":\"Joel Ong, Dorien Herremans\",\"doi\":\"arxiv-2406.08742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces DeepUnifiedMom, a deep learning framework that enhances\\nportfolio management through a multi-task learning approach and a multi-gate\\nmixture of experts. The essence of DeepUnifiedMom lies in its ability to create\\nunified momentum portfolios that incorporate the dynamics of time series\\nmomentum across a spectrum of time frames, a feature often missing in\\ntraditional momentum strategies. Our comprehensive backtesting, encompassing\\ndiverse asset classes such as equity indexes, fixed income, foreign exchange,\\nand commodities, demonstrates that DeepUnifiedMom consistently outperforms\\nbenchmark models, even after factoring in transaction costs. This superior\\nperformance underscores DeepUnifiedMom's capability to capture the full\\nspectrum of momentum opportunities within financial markets. The findings\\nhighlight DeepUnifiedMom as an effective tool for practitioners looking to\\nexploit the entire range of momentum opportunities. It offers a compelling\\nsolution for improving risk-adjusted returns and is a valuable strategy for\\nnavigating the complexities of portfolio management.\",\"PeriodicalId\":501294,\"journal\":{\"name\":\"arXiv - QuantFin - Computational Finance\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Computational Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.08742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.08742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍的 DeepUnifiedMom 是一种深度学习框架,它通过多任务学习方法和专家的多门类混合来加强投资组合管理。DeepUnifiedMom 的精髓在于它能够创建统一的动量投资组合,将时间序列动量的动态纳入不同的时间框架,而传统的动量策略往往缺乏这一特点。我们对股票指数、固定收益、外汇和大宗商品等多种资产类别进行了全面的回溯测试,结果表明,即使考虑到交易成本,DeepUnifiedMom 的表现也始终优于基准模型。这一优异表现凸显了DeepUnifiedMom捕捉金融市场中各种动量机会的能力。研究结果突出表明,DeepUnifiedMom 是从业人员开发各种动量机会的有效工具。它为提高风险调整回报率提供了令人信服的解决方案,也是驾驭复杂投资组合管理的宝贵策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DeepUnifiedMom: Unified Time-series Momentum Portfolio Construction via Multi-Task Learning with Multi-Gate Mixture of Experts
This paper introduces DeepUnifiedMom, a deep learning framework that enhances portfolio management through a multi-task learning approach and a multi-gate mixture of experts. The essence of DeepUnifiedMom lies in its ability to create unified momentum portfolios that incorporate the dynamics of time series momentum across a spectrum of time frames, a feature often missing in traditional momentum strategies. Our comprehensive backtesting, encompassing diverse asset classes such as equity indexes, fixed income, foreign exchange, and commodities, demonstrates that DeepUnifiedMom consistently outperforms benchmark models, even after factoring in transaction costs. This superior performance underscores DeepUnifiedMom's capability to capture the full spectrum of momentum opportunities within financial markets. The findings highlight DeepUnifiedMom as an effective tool for practitioners looking to exploit the entire range of momentum opportunities. It offers a compelling solution for improving risk-adjusted returns and is a valuable strategy for navigating the complexities of portfolio management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信