CatMemo 参加 FinLLM 挑战任务:利用金融应用中的数据融合微调大型语言模型

Yupeng Cao, Zhiyuan Yao, Zhi Chen, Zhiyang Deng
{"title":"CatMemo 参加 FinLLM 挑战任务:利用金融应用中的数据融合微调大型语言模型","authors":"Yupeng Cao, Zhiyuan Yao, Zhi Chen, Zhiyang Deng","doi":"arxiv-2407.01953","DOIUrl":null,"url":null,"abstract":"The integration of Large Language Models (LLMs) into financial analysis has\ngarnered significant attention in the NLP community. This paper presents our\nsolution to IJCAI-2024 FinLLM challenge, investigating the capabilities of LLMs\nwithin three critical areas of financial tasks: financial classification,\nfinancial text summarization, and single stock trading. We adopted Llama3-8B\nand Mistral-7B as base models, fine-tuning them through Parameter Efficient\nFine-Tuning (PEFT) and Low-Rank Adaptation (LoRA) approaches. To enhance model\nperformance, we combine datasets from task 1 and task 2 for data fusion. Our\napproach aims to tackle these diverse tasks in a comprehensive and integrated\nmanner, showcasing LLMs' capacity to address diverse and complex financial\ntasks with improved accuracy and decision-making capabilities.","PeriodicalId":501294,"journal":{"name":"arXiv - QuantFin - Computational Finance","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CatMemo at the FinLLM Challenge Task: Fine-Tuning Large Language Models using Data Fusion in Financial Applications\",\"authors\":\"Yupeng Cao, Zhiyuan Yao, Zhi Chen, Zhiyang Deng\",\"doi\":\"arxiv-2407.01953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The integration of Large Language Models (LLMs) into financial analysis has\\ngarnered significant attention in the NLP community. This paper presents our\\nsolution to IJCAI-2024 FinLLM challenge, investigating the capabilities of LLMs\\nwithin three critical areas of financial tasks: financial classification,\\nfinancial text summarization, and single stock trading. We adopted Llama3-8B\\nand Mistral-7B as base models, fine-tuning them through Parameter Efficient\\nFine-Tuning (PEFT) and Low-Rank Adaptation (LoRA) approaches. To enhance model\\nperformance, we combine datasets from task 1 and task 2 for data fusion. Our\\napproach aims to tackle these diverse tasks in a comprehensive and integrated\\nmanner, showcasing LLMs' capacity to address diverse and complex financial\\ntasks with improved accuracy and decision-making capabilities.\",\"PeriodicalId\":501294,\"journal\":{\"name\":\"arXiv - QuantFin - Computational Finance\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Computational Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.01953\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.01953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将大型语言模型(LLMs)集成到金融分析中已引起 NLP 界的极大关注。本文针对 IJCAI-2024 FinLLM 挑战提出了我们的解决方案,研究了 LLM 在金融任务的三个关键领域中的能力:金融分类、金融文本摘要和单一股票交易。我们采用 Llama3-8B 和 Mistral-7B 作为基础模型,通过参数高效微调(PEFT)和低级别自适应(LoRA)方法对其进行微调。为了提高模型性能,我们将任务 1 和任务 2 的数据集结合起来进行数据融合。我们的方法旨在以全面、综合的方式解决这些不同的任务,展示 LLMs 解决多样化、复杂的金融任务的能力,并提高准确性和决策能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CatMemo at the FinLLM Challenge Task: Fine-Tuning Large Language Models using Data Fusion in Financial Applications
The integration of Large Language Models (LLMs) into financial analysis has garnered significant attention in the NLP community. This paper presents our solution to IJCAI-2024 FinLLM challenge, investigating the capabilities of LLMs within three critical areas of financial tasks: financial classification, financial text summarization, and single stock trading. We adopted Llama3-8B and Mistral-7B as base models, fine-tuning them through Parameter Efficient Fine-Tuning (PEFT) and Low-Rank Adaptation (LoRA) approaches. To enhance model performance, we combine datasets from task 1 and task 2 for data fusion. Our approach aims to tackle these diverse tasks in a comprehensive and integrated manner, showcasing LLMs' capacity to address diverse and complex financial tasks with improved accuracy and decision-making capabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信