非参数几何图形的还原阶建模与图神经网络耦合混合数值方法:结构动力学问题的应用

Victor MatrayLMPS, Faisal AmlaniLMPS, Frédéric FeyelLMPS, David NéronLMPS
{"title":"非参数几何图形的还原阶建模与图神经网络耦合混合数值方法:结构动力学问题的应用","authors":"Victor MatrayLMPS, Faisal AmlaniLMPS, Frédéric FeyelLMPS, David NéronLMPS","doi":"arxiv-2406.02615","DOIUrl":null,"url":null,"abstract":"This work introduces a new approach for accelerating the numerical analysis\nof time-domain partial differential equations (PDEs) governing complex physical\nsystems. The methodology is based on a combination of a classical reduced-order\nmodeling (ROM) framework and recently-introduced Graph Neural Networks (GNNs),\nwhere the latter is trained on highly heterogeneous databases of varying\nnumerical discretization sizes. The proposed techniques are shown to be\nparticularly suitable for non-parametric geometries, ultimately enabling the\ntreatment of a diverse range of geometries and topologies. Performance studies\nare presented in an application context related to the design of aircraft seats\nand their corresponding mechanical responses to shocks, where the main\nmotivation is to reduce the computational burden and enable the rapid design\niteration for such problems that entail non-parametric geometries. The methods\nproposed here are straightforwardly applicable to other scientific or\nengineering problems requiring a large number of finite element-based numerical\nsimulations, with the potential to significantly enhance efficiency while\nmaintaining reasonable accuracy.","PeriodicalId":501482,"journal":{"name":"arXiv - PHYS - Classical Physics","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid numerical methodology coupling Reduced Order Modeling and Graph Neural Networks for non-parametric geometries: applications to structural dynamics problems\",\"authors\":\"Victor MatrayLMPS, Faisal AmlaniLMPS, Frédéric FeyelLMPS, David NéronLMPS\",\"doi\":\"arxiv-2406.02615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work introduces a new approach for accelerating the numerical analysis\\nof time-domain partial differential equations (PDEs) governing complex physical\\nsystems. The methodology is based on a combination of a classical reduced-order\\nmodeling (ROM) framework and recently-introduced Graph Neural Networks (GNNs),\\nwhere the latter is trained on highly heterogeneous databases of varying\\nnumerical discretization sizes. The proposed techniques are shown to be\\nparticularly suitable for non-parametric geometries, ultimately enabling the\\ntreatment of a diverse range of geometries and topologies. Performance studies\\nare presented in an application context related to the design of aircraft seats\\nand their corresponding mechanical responses to shocks, where the main\\nmotivation is to reduce the computational burden and enable the rapid design\\niteration for such problems that entail non-parametric geometries. The methods\\nproposed here are straightforwardly applicable to other scientific or\\nengineering problems requiring a large number of finite element-based numerical\\nsimulations, with the potential to significantly enhance efficiency while\\nmaintaining reasonable accuracy.\",\"PeriodicalId\":501482,\"journal\":{\"name\":\"arXiv - PHYS - Classical Physics\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Classical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.02615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Classical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.02615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项研究引入了一种新方法,用于加速对支配复杂物理系统的时域偏微分方程(PDEs)的数值分析。该方法基于经典的还原秩建模(ROM)框架和最近引入的图神经网络(GNN)的组合,后者在不同数值离散大小的高度异构数据库上进行训练。结果表明,所提出的技术特别适用于非参数几何图形,最终能够处理各种几何图形和拓扑结构。性能研究是在与飞机座椅设计及其对冲击的相应机械响应有关的应用背景下进行的,其主要动机是减轻计算负担,并实现对这类涉及非参数几何的问题的快速设计。本文提出的方法可直接应用于其他需要大量基于有限元的数值模拟的科学或工程问题,并有可能在保持合理精度的同时显著提高效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hybrid numerical methodology coupling Reduced Order Modeling and Graph Neural Networks for non-parametric geometries: applications to structural dynamics problems
This work introduces a new approach for accelerating the numerical analysis of time-domain partial differential equations (PDEs) governing complex physical systems. The methodology is based on a combination of a classical reduced-order modeling (ROM) framework and recently-introduced Graph Neural Networks (GNNs), where the latter is trained on highly heterogeneous databases of varying numerical discretization sizes. The proposed techniques are shown to be particularly suitable for non-parametric geometries, ultimately enabling the treatment of a diverse range of geometries and topologies. Performance studies are presented in an application context related to the design of aircraft seats and their corresponding mechanical responses to shocks, where the main motivation is to reduce the computational burden and enable the rapid design iteration for such problems that entail non-parametric geometries. The methods proposed here are straightforwardly applicable to other scientific or engineering problems requiring a large number of finite element-based numerical simulations, with the potential to significantly enhance efficiency while maintaining reasonable accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信