{"title":"连通性条件和边界 Poincaré 不等式","authors":"Olli Tapiola, Xavier Tolsa","doi":"10.2140/apde.2024.17.1831","DOIUrl":null,"url":null,"abstract":"<p>Inspired by recent work of Mourgoglou and the second author, and earlier work of Hofmann, Mitrea and Taylor, we consider connections between the local John condition, the Harnack chain condition and weak boundary Poincaré inequalities in open sets <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">Ω</mi>\n<mo>⊂</mo> <msup><mrow><mi>ℝ</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup> </math>, with codimension-<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn></math> Ahlfors–David regular boundaries. First, we prove that if <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">Ω</mi></math> satisfies both the local John condition and the exterior corkscrew condition, then <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">Ω</mi></math> also satisfies the Harnack chain condition (and hence is a chord-arc domain). Second, we show that if <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">Ω</mi></math> is a <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn></math>-sided chord-arc domain, then the boundary <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>∂</mi><mi mathvariant=\"normal\">Ω</mi></math> supports a Heinonen–Koskela-type weak <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn></math>-Poincaré inequality. We also construct an example of a set <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">Ω</mi>\n<mo>⊂</mo> <msup><mrow><mi>ℝ</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math> such that the boundary <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>∂</mi><mi mathvariant=\"normal\">Ω</mi></math> is Ahlfors–David regular and supports a weak boundary <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn></math>-Poincaré inequality but <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">Ω</mi></math> is not a chord-arc domain. Our proofs utilize significant advances in particularly harmonic measure, uniform rectifiability and metric Poincaré theories. </p>","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":"135 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Connectivity conditions and boundary Poincaré inequalities\",\"authors\":\"Olli Tapiola, Xavier Tolsa\",\"doi\":\"10.2140/apde.2024.17.1831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Inspired by recent work of Mourgoglou and the second author, and earlier work of Hofmann, Mitrea and Taylor, we consider connections between the local John condition, the Harnack chain condition and weak boundary Poincaré inequalities in open sets <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"normal\\\">Ω</mi>\\n<mo>⊂</mo> <msup><mrow><mi>ℝ</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup> </math>, with codimension-<math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>1</mn></math> Ahlfors–David regular boundaries. First, we prove that if <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"normal\\\">Ω</mi></math> satisfies both the local John condition and the exterior corkscrew condition, then <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"normal\\\">Ω</mi></math> also satisfies the Harnack chain condition (and hence is a chord-arc domain). Second, we show that if <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"normal\\\">Ω</mi></math> is a <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>2</mn></math>-sided chord-arc domain, then the boundary <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>∂</mi><mi mathvariant=\\\"normal\\\">Ω</mi></math> supports a Heinonen–Koskela-type weak <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>1</mn></math>-Poincaré inequality. We also construct an example of a set <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"normal\\\">Ω</mi>\\n<mo>⊂</mo> <msup><mrow><mi>ℝ</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math> such that the boundary <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>∂</mi><mi mathvariant=\\\"normal\\\">Ω</mi></math> is Ahlfors–David regular and supports a weak boundary <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>1</mn></math>-Poincaré inequality but <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"normal\\\">Ω</mi></math> is not a chord-arc domain. Our proofs utilize significant advances in particularly harmonic measure, uniform rectifiability and metric Poincaré theories. </p>\",\"PeriodicalId\":49277,\"journal\":{\"name\":\"Analysis & PDE\",\"volume\":\"135 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis & PDE\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/apde.2024.17.1831\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & PDE","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.1831","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Connectivity conditions and boundary Poincaré inequalities
Inspired by recent work of Mourgoglou and the second author, and earlier work of Hofmann, Mitrea and Taylor, we consider connections between the local John condition, the Harnack chain condition and weak boundary Poincaré inequalities in open sets , with codimension- Ahlfors–David regular boundaries. First, we prove that if satisfies both the local John condition and the exterior corkscrew condition, then also satisfies the Harnack chain condition (and hence is a chord-arc domain). Second, we show that if is a -sided chord-arc domain, then the boundary supports a Heinonen–Koskela-type weak -Poincaré inequality. We also construct an example of a set such that the boundary is Ahlfors–David regular and supports a weak boundary -Poincaré inequality but is not a chord-arc domain. Our proofs utilize significant advances in particularly harmonic measure, uniform rectifiability and metric Poincaré theories.
期刊介绍:
APDE aims to be the leading specialized scholarly publication in mathematical analysis. The full editorial board votes on all articles, accounting for the journal’s exceptionally high standard and ensuring its broad profile.