{"title":"连通性条件和边界 Poincaré 不等式","authors":"Olli Tapiola, Xavier Tolsa","doi":"10.2140/apde.2024.17.1831","DOIUrl":null,"url":null,"abstract":"<p>Inspired by recent work of Mourgoglou and the second author, and earlier work of Hofmann, Mitrea and Taylor, we consider connections between the local John condition, the Harnack chain condition and weak boundary Poincaré inequalities in open sets <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">Ω</mi>\n<mo>⊂</mo> <msup><mrow><mi>ℝ</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup> </math>, with codimension-<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn></math> Ahlfors–David regular boundaries. First, we prove that if <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">Ω</mi></math> satisfies both the local John condition and the exterior corkscrew condition, then <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">Ω</mi></math> also satisfies the Harnack chain condition (and hence is a chord-arc domain). Second, we show that if <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">Ω</mi></math> is a <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn></math>-sided chord-arc domain, then the boundary <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>∂</mi><mi mathvariant=\"normal\">Ω</mi></math> supports a Heinonen–Koskela-type weak <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn></math>-Poincaré inequality. We also construct an example of a set <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">Ω</mi>\n<mo>⊂</mo> <msup><mrow><mi>ℝ</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math> such that the boundary <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>∂</mi><mi mathvariant=\"normal\">Ω</mi></math> is Ahlfors–David regular and supports a weak boundary <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn></math>-Poincaré inequality but <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">Ω</mi></math> is not a chord-arc domain. Our proofs utilize significant advances in particularly harmonic measure, uniform rectifiability and metric Poincaré theories. </p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Connectivity conditions and boundary Poincaré inequalities\",\"authors\":\"Olli Tapiola, Xavier Tolsa\",\"doi\":\"10.2140/apde.2024.17.1831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Inspired by recent work of Mourgoglou and the second author, and earlier work of Hofmann, Mitrea and Taylor, we consider connections between the local John condition, the Harnack chain condition and weak boundary Poincaré inequalities in open sets <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"normal\\\">Ω</mi>\\n<mo>⊂</mo> <msup><mrow><mi>ℝ</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup> </math>, with codimension-<math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>1</mn></math> Ahlfors–David regular boundaries. First, we prove that if <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"normal\\\">Ω</mi></math> satisfies both the local John condition and the exterior corkscrew condition, then <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"normal\\\">Ω</mi></math> also satisfies the Harnack chain condition (and hence is a chord-arc domain). Second, we show that if <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"normal\\\">Ω</mi></math> is a <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>2</mn></math>-sided chord-arc domain, then the boundary <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>∂</mi><mi mathvariant=\\\"normal\\\">Ω</mi></math> supports a Heinonen–Koskela-type weak <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>1</mn></math>-Poincaré inequality. We also construct an example of a set <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"normal\\\">Ω</mi>\\n<mo>⊂</mo> <msup><mrow><mi>ℝ</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math> such that the boundary <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>∂</mi><mi mathvariant=\\\"normal\\\">Ω</mi></math> is Ahlfors–David regular and supports a weak boundary <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>1</mn></math>-Poincaré inequality but <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"normal\\\">Ω</mi></math> is not a chord-arc domain. Our proofs utilize significant advances in particularly harmonic measure, uniform rectifiability and metric Poincaré theories. </p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/apde.2024.17.1831\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.1831","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Connectivity conditions and boundary Poincaré inequalities
Inspired by recent work of Mourgoglou and the second author, and earlier work of Hofmann, Mitrea and Taylor, we consider connections between the local John condition, the Harnack chain condition and weak boundary Poincaré inequalities in open sets , with codimension- Ahlfors–David regular boundaries. First, we prove that if satisfies both the local John condition and the exterior corkscrew condition, then also satisfies the Harnack chain condition (and hence is a chord-arc domain). Second, we show that if is a -sided chord-arc domain, then the boundary supports a Heinonen–Koskela-type weak -Poincaré inequality. We also construct an example of a set such that the boundary is Ahlfors–David regular and supports a weak boundary -Poincaré inequality but is not a chord-arc domain. Our proofs utilize significant advances in particularly harmonic measure, uniform rectifiability and metric Poincaré theories.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.