Yuhan Lyu, Fan Yang, Bharathi Sundaresh, Federico Rosconi, Tim van Opijnen, Jianmin Gao
{"title":"共价抑制宿主-病原体蛋白质-蛋白质相互作用可降低肺炎链球菌的感染性","authors":"Yuhan Lyu, Fan Yang, Bharathi Sundaresh, Federico Rosconi, Tim van Opijnen, Jianmin Gao","doi":"10.1021/jacsau.4c00195","DOIUrl":null,"url":null,"abstract":"The ever-expanding antibiotic resistance urgently calls for novel antibacterial therapeutics, especially those with a new mode of action. We report herein our exploration of protein–protein interaction (PPI) inhibition as a new mechanism to thwart bacterial pathogenesis. Specifically, we describe potent and specific inhibitors of the pneumococcal surface protein PspC, an important virulence factor that facilitates the infection of <i>Streptococcus pneumoniae.</i> Specifically, PspC has been documented to recruit human complement factor H (hFH) to suppress host complement activation and/or promote the bacterial attachment to host tissues. The CCP9 domain of hFH was recombinantly expressed to inhibit the PspC–hFH interaction as demonstrated on live pneumococcal cells. The inhibitor allowed for the first pharmacological intervention of the PspC–hFH interaction. This PPI inhibition reduced pneumococci’s attachment to epithelial cells and also resensitized the D39 strain of <i>S. pneumoniae</i> for opsonization. Importantly, we have further devised covalent versions of CCP9, which afforded long-lasting PspC inhibition with low nanomolar potency. Overall, our results showcase the promise of PPI inhibition for combating bacterial infections as well as the power of covalent inhibitors.","PeriodicalId":14799,"journal":{"name":"JACS Au","volume":"135 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Covalent Inhibition of a Host–Pathogen Protein–Protein Interaction Reduces the Infectivity of Streptococcus pneumoniae\",\"authors\":\"Yuhan Lyu, Fan Yang, Bharathi Sundaresh, Federico Rosconi, Tim van Opijnen, Jianmin Gao\",\"doi\":\"10.1021/jacsau.4c00195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ever-expanding antibiotic resistance urgently calls for novel antibacterial therapeutics, especially those with a new mode of action. We report herein our exploration of protein–protein interaction (PPI) inhibition as a new mechanism to thwart bacterial pathogenesis. Specifically, we describe potent and specific inhibitors of the pneumococcal surface protein PspC, an important virulence factor that facilitates the infection of <i>Streptococcus pneumoniae.</i> Specifically, PspC has been documented to recruit human complement factor H (hFH) to suppress host complement activation and/or promote the bacterial attachment to host tissues. The CCP9 domain of hFH was recombinantly expressed to inhibit the PspC–hFH interaction as demonstrated on live pneumococcal cells. The inhibitor allowed for the first pharmacological intervention of the PspC–hFH interaction. This PPI inhibition reduced pneumococci’s attachment to epithelial cells and also resensitized the D39 strain of <i>S. pneumoniae</i> for opsonization. Importantly, we have further devised covalent versions of CCP9, which afforded long-lasting PspC inhibition with low nanomolar potency. Overall, our results showcase the promise of PPI inhibition for combating bacterial infections as well as the power of covalent inhibitors.\",\"PeriodicalId\":14799,\"journal\":{\"name\":\"JACS Au\",\"volume\":\"135 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JACS Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/jacsau.4c00195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/jacsau.4c00195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Covalent Inhibition of a Host–Pathogen Protein–Protein Interaction Reduces the Infectivity of Streptococcus pneumoniae
The ever-expanding antibiotic resistance urgently calls for novel antibacterial therapeutics, especially those with a new mode of action. We report herein our exploration of protein–protein interaction (PPI) inhibition as a new mechanism to thwart bacterial pathogenesis. Specifically, we describe potent and specific inhibitors of the pneumococcal surface protein PspC, an important virulence factor that facilitates the infection of Streptococcus pneumoniae. Specifically, PspC has been documented to recruit human complement factor H (hFH) to suppress host complement activation and/or promote the bacterial attachment to host tissues. The CCP9 domain of hFH was recombinantly expressed to inhibit the PspC–hFH interaction as demonstrated on live pneumococcal cells. The inhibitor allowed for the first pharmacological intervention of the PspC–hFH interaction. This PPI inhibition reduced pneumococci’s attachment to epithelial cells and also resensitized the D39 strain of S. pneumoniae for opsonization. Importantly, we have further devised covalent versions of CCP9, which afforded long-lasting PspC inhibition with low nanomolar potency. Overall, our results showcase the promise of PPI inhibition for combating bacterial infections as well as the power of covalent inhibitors.