Chenming Huang, Li Zhang, Tong Tang, Haijiao Wang, Yingqian Jiang, Hanwen Ren, Yitian Zhang, Jiali Fang, Wenhe Zhang, Xian Jia, Song You, Bin Qin
{"title":"应用定向进化和机器学习提高酮还原酶合成二氢四苯并嗪的非对映选择性","authors":"Chenming Huang, Li Zhang, Tong Tang, Haijiao Wang, Yingqian Jiang, Hanwen Ren, Yitian Zhang, Jiali Fang, Wenhe Zhang, Xian Jia, Song You, Bin Qin","doi":"10.1021/jacsau.4c00284","DOIUrl":null,"url":null,"abstract":"Biocatalysis is an effective approach for producing chiral drug intermediates that are often difficult to synthesize using traditional chemical methods. A time-efficient strategy is required to accelerate the directed evolution process to achieve the desired enzyme function. In this research, we evaluated machine learning-assisted directed evolution as a potential approach for enzyme engineering, using a moderately diastereoselective ketoreductase library as a model system. Machine learning-assisted directed evolution and traditional directed evolution methods were compared for reducing (±)-tetrabenazine to dihydrotetrabenazine via kinetic resolution facilitated by BsSDR10, a short-chain dehydrogenase/reductase from <i>Bacillus subtilis</i>. Both methods successfully identified variants with significantly improved diastereoselectivity for each isomer of dihydrotetrabenazine. Furthermore, the preparation of (2<i>S</i>,3<i>S</i>,11b<i>S</i>)-dihydrotetrabenazine has been successfully scaled up, with an isolated yield of 40.7% and a diastereoselectivity of 91.3%.","PeriodicalId":14799,"journal":{"name":"JACS Au","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Directed Evolution and Machine Learning to Enhance the Diastereoselectivity of Ketoreductase for Dihydrotetrabenazine Synthesis\",\"authors\":\"Chenming Huang, Li Zhang, Tong Tang, Haijiao Wang, Yingqian Jiang, Hanwen Ren, Yitian Zhang, Jiali Fang, Wenhe Zhang, Xian Jia, Song You, Bin Qin\",\"doi\":\"10.1021/jacsau.4c00284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biocatalysis is an effective approach for producing chiral drug intermediates that are often difficult to synthesize using traditional chemical methods. A time-efficient strategy is required to accelerate the directed evolution process to achieve the desired enzyme function. In this research, we evaluated machine learning-assisted directed evolution as a potential approach for enzyme engineering, using a moderately diastereoselective ketoreductase library as a model system. Machine learning-assisted directed evolution and traditional directed evolution methods were compared for reducing (±)-tetrabenazine to dihydrotetrabenazine via kinetic resolution facilitated by BsSDR10, a short-chain dehydrogenase/reductase from <i>Bacillus subtilis</i>. Both methods successfully identified variants with significantly improved diastereoselectivity for each isomer of dihydrotetrabenazine. Furthermore, the preparation of (2<i>S</i>,3<i>S</i>,11b<i>S</i>)-dihydrotetrabenazine has been successfully scaled up, with an isolated yield of 40.7% and a diastereoselectivity of 91.3%.\",\"PeriodicalId\":14799,\"journal\":{\"name\":\"JACS Au\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JACS Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/jacsau.4c00284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/jacsau.4c00284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of Directed Evolution and Machine Learning to Enhance the Diastereoselectivity of Ketoreductase for Dihydrotetrabenazine Synthesis
Biocatalysis is an effective approach for producing chiral drug intermediates that are often difficult to synthesize using traditional chemical methods. A time-efficient strategy is required to accelerate the directed evolution process to achieve the desired enzyme function. In this research, we evaluated machine learning-assisted directed evolution as a potential approach for enzyme engineering, using a moderately diastereoselective ketoreductase library as a model system. Machine learning-assisted directed evolution and traditional directed evolution methods were compared for reducing (±)-tetrabenazine to dihydrotetrabenazine via kinetic resolution facilitated by BsSDR10, a short-chain dehydrogenase/reductase from Bacillus subtilis. Both methods successfully identified variants with significantly improved diastereoselectivity for each isomer of dihydrotetrabenazine. Furthermore, the preparation of (2S,3S,11bS)-dihydrotetrabenazine has been successfully scaled up, with an isolated yield of 40.7% and a diastereoselectivity of 91.3%.