{"title":"空间点不是点:它们的波函数消除了量子场论的紫外发散性","authors":"Kevin Cahill","doi":"arxiv-2406.09448","DOIUrl":null,"url":null,"abstract":"The points $p(x)$ of space are observables that obey quantum mechanics with\naverage values $\\langle p(x) \\rangle$ that obey general relativity. In empty\nflat 3-space, a point $p(x)$ may be represented as the sum $ \\boldsymbol p(x) =\n\\langle \\boldsymbol p(x) \\rangle+ \\boldsymbol \\epsilon(x)$ of its average value\n$\\langle \\boldsymbol p(x) \\rangle = \\boldsymbol x$ and its quantum remainder $\n\\boldsymbol \\epsilon(x)$. The ubiquitous Fourier exponential $\\exp( i\n\\boldsymbol k \\cdot \\boldsymbol p(x))$ is then $\\exp( i \\boldsymbol k \\cdot (\n\\boldsymbol x + \\boldsymbol \\epsilon))$. If the probability distribution of the\nquantum remainders $ \\boldsymbol \\epsilon(x)$ is normal and of width $\\sigma$,\nthen the average of the exponential $\\langle \\exp(i \\boldsymbol k ( \\boldsymbol\nx + \\boldsymbol \\epsilon ) \\rangle$ contains a gaussian factor $ \\exp( -\n\\sigma^2 \\boldsymbol k^2/2 ) $ which makes self-energies, Feynman diagrams and\ndark energy ultraviolet finite. This complex of ideas requires new bosons and\nsuggests that supersymmetry is softly broken.","PeriodicalId":501190,"journal":{"name":"arXiv - PHYS - General Physics","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The points of space are not points: their wavefunctions remove the ultraviolet divergences of quantum field theory\",\"authors\":\"Kevin Cahill\",\"doi\":\"arxiv-2406.09448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The points $p(x)$ of space are observables that obey quantum mechanics with\\naverage values $\\\\langle p(x) \\\\rangle$ that obey general relativity. In empty\\nflat 3-space, a point $p(x)$ may be represented as the sum $ \\\\boldsymbol p(x) =\\n\\\\langle \\\\boldsymbol p(x) \\\\rangle+ \\\\boldsymbol \\\\epsilon(x)$ of its average value\\n$\\\\langle \\\\boldsymbol p(x) \\\\rangle = \\\\boldsymbol x$ and its quantum remainder $\\n\\\\boldsymbol \\\\epsilon(x)$. The ubiquitous Fourier exponential $\\\\exp( i\\n\\\\boldsymbol k \\\\cdot \\\\boldsymbol p(x))$ is then $\\\\exp( i \\\\boldsymbol k \\\\cdot (\\n\\\\boldsymbol x + \\\\boldsymbol \\\\epsilon))$. If the probability distribution of the\\nquantum remainders $ \\\\boldsymbol \\\\epsilon(x)$ is normal and of width $\\\\sigma$,\\nthen the average of the exponential $\\\\langle \\\\exp(i \\\\boldsymbol k ( \\\\boldsymbol\\nx + \\\\boldsymbol \\\\epsilon ) \\\\rangle$ contains a gaussian factor $ \\\\exp( -\\n\\\\sigma^2 \\\\boldsymbol k^2/2 ) $ which makes self-energies, Feynman diagrams and\\ndark energy ultraviolet finite. This complex of ideas requires new bosons and\\nsuggests that supersymmetry is softly broken.\",\"PeriodicalId\":501190,\"journal\":{\"name\":\"arXiv - PHYS - General Physics\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - General Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.09448\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - General Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.09448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The points of space are not points: their wavefunctions remove the ultraviolet divergences of quantum field theory
The points $p(x)$ of space are observables that obey quantum mechanics with
average values $\langle p(x) \rangle$ that obey general relativity. In empty
flat 3-space, a point $p(x)$ may be represented as the sum $ \boldsymbol p(x) =
\langle \boldsymbol p(x) \rangle+ \boldsymbol \epsilon(x)$ of its average value
$\langle \boldsymbol p(x) \rangle = \boldsymbol x$ and its quantum remainder $
\boldsymbol \epsilon(x)$. The ubiquitous Fourier exponential $\exp( i
\boldsymbol k \cdot \boldsymbol p(x))$ is then $\exp( i \boldsymbol k \cdot (
\boldsymbol x + \boldsymbol \epsilon))$. If the probability distribution of the
quantum remainders $ \boldsymbol \epsilon(x)$ is normal and of width $\sigma$,
then the average of the exponential $\langle \exp(i \boldsymbol k ( \boldsymbol
x + \boldsymbol \epsilon ) \rangle$ contains a gaussian factor $ \exp( -
\sigma^2 \boldsymbol k^2/2 ) $ which makes self-energies, Feynman diagrams and
dark energy ultraviolet finite. This complex of ideas requires new bosons and
suggests that supersymmetry is softly broken.