评估具有视觉能力的聊天机器人在解释运动学图形方面的作用:免费模式与订阅模式的比较研究

Giulia Polverini, Bor Gregorcic
{"title":"评估具有视觉能力的聊天机器人在解释运动学图形方面的作用:免费模式与订阅模式的比较研究","authors":"Giulia Polverini, Bor Gregorcic","doi":"arxiv-2406.14685","DOIUrl":null,"url":null,"abstract":"This study investigates the performance of eight large multimodal model\n(LMM)-based chatbots on the Test of Understanding Graphs in Kinematics (TUG-K),\na research-based concept inventory. Graphs are a widely used representation in\nSTEM and medical fields, making them a relevant topic for exploring LMM-based\nchatbots' visual interpretation abilities. We evaluated both freely available\nchatbots (Gemini 1.0 Pro, Claude 3 Sonnet, Microsoft Copilot, and ChatGPT-4o)\nand subscription-based ones (Gemini 1.0 Ultra, Gemini 1.5 Pro API, Claude 3\nOpus, and ChatGPT-4). We found that OpenAI's chatbots outperform all the\nothers, with ChatGPT-4o showing the overall best performance. Contrary to\nexpectations, we found no notable differences in the overall performance\nbetween freely available and subscription-based versions of Gemini and Claude 3\nchatbots, with the exception of Gemini 1.5 Pro, available via API. In addition,\nwe found that tasks relying more heavily on linguistic input were generally\neasier for chatbots than those requiring visual interpretation. The study\nprovides a basis for considerations of LMM-based chatbot applications in STEM\nand medical education, and suggests directions for future research.","PeriodicalId":501565,"journal":{"name":"arXiv - PHYS - Physics Education","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating vision-capable chatbots in interpreting kinematics graphs: a comparative study of free and subscription-based models\",\"authors\":\"Giulia Polverini, Bor Gregorcic\",\"doi\":\"arxiv-2406.14685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the performance of eight large multimodal model\\n(LMM)-based chatbots on the Test of Understanding Graphs in Kinematics (TUG-K),\\na research-based concept inventory. Graphs are a widely used representation in\\nSTEM and medical fields, making them a relevant topic for exploring LMM-based\\nchatbots' visual interpretation abilities. We evaluated both freely available\\nchatbots (Gemini 1.0 Pro, Claude 3 Sonnet, Microsoft Copilot, and ChatGPT-4o)\\nand subscription-based ones (Gemini 1.0 Ultra, Gemini 1.5 Pro API, Claude 3\\nOpus, and ChatGPT-4). We found that OpenAI's chatbots outperform all the\\nothers, with ChatGPT-4o showing the overall best performance. Contrary to\\nexpectations, we found no notable differences in the overall performance\\nbetween freely available and subscription-based versions of Gemini and Claude 3\\nchatbots, with the exception of Gemini 1.5 Pro, available via API. In addition,\\nwe found that tasks relying more heavily on linguistic input were generally\\neasier for chatbots than those requiring visual interpretation. The study\\nprovides a basis for considerations of LMM-based chatbot applications in STEM\\nand medical education, and suggests directions for future research.\",\"PeriodicalId\":501565,\"journal\":{\"name\":\"arXiv - PHYS - Physics Education\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Physics Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.14685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Physics Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.14685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究调查了八个基于大型多模态模型(LMM)的聊天机器人在运动学图形理解测试(TUG-K)中的表现,TUG-K是一个基于研究的概念清单。图形是科技、教育和医疗领域广泛使用的一种表征方式,因此是探索基于 LMM 聊天机器人视觉解读能力的一个相关主题。我们评估了免费提供的聊天机器人(Gemini 1.0 Pro、Claude 3 Sonnet、Microsoft Copilot 和 ChatGPT-4o)和订阅型聊天机器人(Gemini 1.0 Ultra、Gemini 1.5 Pro API、Claude 3Opus 和 ChatGPT-4)。我们发现,OpenAI 的聊天机器人表现优于其他所有聊天机器人,其中 ChatGPT-4o 的整体表现最佳。与预期相反,我们发现除了通过 API 提供的 Gemini 1.5 Pro 外,免费版本和订阅版本的 Gemini 和 Claude 3 聊天机器人在整体性能上没有明显差异。此外,我们还发现,与那些需要视觉解读的任务相比,聊天机器人在更大程度上依赖于语言输入。这项研究为考虑基于 LMM 的聊天机器人在 STEM 和医学教育中的应用奠定了基础,并提出了未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating vision-capable chatbots in interpreting kinematics graphs: a comparative study of free and subscription-based models
This study investigates the performance of eight large multimodal model (LMM)-based chatbots on the Test of Understanding Graphs in Kinematics (TUG-K), a research-based concept inventory. Graphs are a widely used representation in STEM and medical fields, making them a relevant topic for exploring LMM-based chatbots' visual interpretation abilities. We evaluated both freely available chatbots (Gemini 1.0 Pro, Claude 3 Sonnet, Microsoft Copilot, and ChatGPT-4o) and subscription-based ones (Gemini 1.0 Ultra, Gemini 1.5 Pro API, Claude 3 Opus, and ChatGPT-4). We found that OpenAI's chatbots outperform all the others, with ChatGPT-4o showing the overall best performance. Contrary to expectations, we found no notable differences in the overall performance between freely available and subscription-based versions of Gemini and Claude 3 chatbots, with the exception of Gemini 1.5 Pro, available via API. In addition, we found that tasks relying more heavily on linguistic input were generally easier for chatbots than those requiring visual interpretation. The study provides a basis for considerations of LMM-based chatbot applications in STEM and medical education, and suggests directions for future research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信