{"title":"评估具有视觉能力的聊天机器人在解释运动学图形方面的作用:免费模式与订阅模式的比较研究","authors":"Giulia Polverini, Bor Gregorcic","doi":"arxiv-2406.14685","DOIUrl":null,"url":null,"abstract":"This study investigates the performance of eight large multimodal model\n(LMM)-based chatbots on the Test of Understanding Graphs in Kinematics (TUG-K),\na research-based concept inventory. Graphs are a widely used representation in\nSTEM and medical fields, making them a relevant topic for exploring LMM-based\nchatbots' visual interpretation abilities. We evaluated both freely available\nchatbots (Gemini 1.0 Pro, Claude 3 Sonnet, Microsoft Copilot, and ChatGPT-4o)\nand subscription-based ones (Gemini 1.0 Ultra, Gemini 1.5 Pro API, Claude 3\nOpus, and ChatGPT-4). We found that OpenAI's chatbots outperform all the\nothers, with ChatGPT-4o showing the overall best performance. Contrary to\nexpectations, we found no notable differences in the overall performance\nbetween freely available and subscription-based versions of Gemini and Claude 3\nchatbots, with the exception of Gemini 1.5 Pro, available via API. In addition,\nwe found that tasks relying more heavily on linguistic input were generally\neasier for chatbots than those requiring visual interpretation. The study\nprovides a basis for considerations of LMM-based chatbot applications in STEM\nand medical education, and suggests directions for future research.","PeriodicalId":501565,"journal":{"name":"arXiv - PHYS - Physics Education","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating vision-capable chatbots in interpreting kinematics graphs: a comparative study of free and subscription-based models\",\"authors\":\"Giulia Polverini, Bor Gregorcic\",\"doi\":\"arxiv-2406.14685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the performance of eight large multimodal model\\n(LMM)-based chatbots on the Test of Understanding Graphs in Kinematics (TUG-K),\\na research-based concept inventory. Graphs are a widely used representation in\\nSTEM and medical fields, making them a relevant topic for exploring LMM-based\\nchatbots' visual interpretation abilities. We evaluated both freely available\\nchatbots (Gemini 1.0 Pro, Claude 3 Sonnet, Microsoft Copilot, and ChatGPT-4o)\\nand subscription-based ones (Gemini 1.0 Ultra, Gemini 1.5 Pro API, Claude 3\\nOpus, and ChatGPT-4). We found that OpenAI's chatbots outperform all the\\nothers, with ChatGPT-4o showing the overall best performance. Contrary to\\nexpectations, we found no notable differences in the overall performance\\nbetween freely available and subscription-based versions of Gemini and Claude 3\\nchatbots, with the exception of Gemini 1.5 Pro, available via API. In addition,\\nwe found that tasks relying more heavily on linguistic input were generally\\neasier for chatbots than those requiring visual interpretation. The study\\nprovides a basis for considerations of LMM-based chatbot applications in STEM\\nand medical education, and suggests directions for future research.\",\"PeriodicalId\":501565,\"journal\":{\"name\":\"arXiv - PHYS - Physics Education\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Physics Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.14685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Physics Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.14685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本研究调查了八个基于大型多模态模型(LMM)的聊天机器人在运动学图形理解测试(TUG-K)中的表现,TUG-K是一个基于研究的概念清单。图形是科技、教育和医疗领域广泛使用的一种表征方式,因此是探索基于 LMM 聊天机器人视觉解读能力的一个相关主题。我们评估了免费提供的聊天机器人(Gemini 1.0 Pro、Claude 3 Sonnet、Microsoft Copilot 和 ChatGPT-4o)和订阅型聊天机器人(Gemini 1.0 Ultra、Gemini 1.5 Pro API、Claude 3Opus 和 ChatGPT-4)。我们发现,OpenAI 的聊天机器人表现优于其他所有聊天机器人,其中 ChatGPT-4o 的整体表现最佳。与预期相反,我们发现除了通过 API 提供的 Gemini 1.5 Pro 外,免费版本和订阅版本的 Gemini 和 Claude 3 聊天机器人在整体性能上没有明显差异。此外,我们还发现,与那些需要视觉解读的任务相比,聊天机器人在更大程度上依赖于语言输入。这项研究为考虑基于 LMM 的聊天机器人在 STEM 和医学教育中的应用奠定了基础,并提出了未来的研究方向。
Evaluating vision-capable chatbots in interpreting kinematics graphs: a comparative study of free and subscription-based models
This study investigates the performance of eight large multimodal model
(LMM)-based chatbots on the Test of Understanding Graphs in Kinematics (TUG-K),
a research-based concept inventory. Graphs are a widely used representation in
STEM and medical fields, making them a relevant topic for exploring LMM-based
chatbots' visual interpretation abilities. We evaluated both freely available
chatbots (Gemini 1.0 Pro, Claude 3 Sonnet, Microsoft Copilot, and ChatGPT-4o)
and subscription-based ones (Gemini 1.0 Ultra, Gemini 1.5 Pro API, Claude 3
Opus, and ChatGPT-4). We found that OpenAI's chatbots outperform all the
others, with ChatGPT-4o showing the overall best performance. Contrary to
expectations, we found no notable differences in the overall performance
between freely available and subscription-based versions of Gemini and Claude 3
chatbots, with the exception of Gemini 1.5 Pro, available via API. In addition,
we found that tasks relying more heavily on linguistic input were generally
easier for chatbots than those requiring visual interpretation. The study
provides a basis for considerations of LMM-based chatbot applications in STEM
and medical education, and suggests directions for future research.