S_3$ 对称三对角代数

Paul Terwilliger
{"title":"S_3$ 对称三对角代数","authors":"Paul Terwilliger","doi":"arxiv-2407.00551","DOIUrl":null,"url":null,"abstract":"The tridiagonal algebra is defined by two generators and two relations,\ncalled the tridiagonal relations. Special cases of the tridiagonal algebra\ninclude the $q$-Onsager algebra, the positive part of the $q$-deformed\nenveloping algebra $U_q({\\widehat{\\mathfrak{sl}}}_2)$, and the enveloping\nalgebra of the Onsager Lie algebra. In this paper, we introduce the $S_3$-symmetric tridiagonal algebra. This\nalgebra has six generators. The generators can be identified with the vertices\nof a regular hexagon, such that nonadjacent generators commute and adjacent\ngenerators satisfy a pair of tridiagonal relations. For a $Q$-polynomial\ndistance-regular graph $\\Gamma$ we turn the tensor power $V^{\\otimes 3}$ of the\nstandard module $V$ into a module for an $S_3$-symmetric tridiagonal algebra. We investigate in detail the case in which $\\Gamma$ is a Hamming graph. We\ngive some conjectures and open problems.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"237 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The $S_3$-symmetric tridiagonal algebra\",\"authors\":\"Paul Terwilliger\",\"doi\":\"arxiv-2407.00551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The tridiagonal algebra is defined by two generators and two relations,\\ncalled the tridiagonal relations. Special cases of the tridiagonal algebra\\ninclude the $q$-Onsager algebra, the positive part of the $q$-deformed\\nenveloping algebra $U_q({\\\\widehat{\\\\mathfrak{sl}}}_2)$, and the enveloping\\nalgebra of the Onsager Lie algebra. In this paper, we introduce the $S_3$-symmetric tridiagonal algebra. This\\nalgebra has six generators. The generators can be identified with the vertices\\nof a regular hexagon, such that nonadjacent generators commute and adjacent\\ngenerators satisfy a pair of tridiagonal relations. For a $Q$-polynomial\\ndistance-regular graph $\\\\Gamma$ we turn the tensor power $V^{\\\\otimes 3}$ of the\\nstandard module $V$ into a module for an $S_3$-symmetric tridiagonal algebra. We investigate in detail the case in which $\\\\Gamma$ is a Hamming graph. We\\ngive some conjectures and open problems.\",\"PeriodicalId\":501317,\"journal\":{\"name\":\"arXiv - MATH - Quantum Algebra\",\"volume\":\"237 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Quantum Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.00551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.00551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

三对角代数由两个生成器和两个关系(称为三对角关系)定义。三对角代数的特例包括 $q$-Onsager 代数、$q$ 变形包络代数的正部分 $U_q({\widehat\mathfrak{sl}}_2)$ 以及 Onsager Lie 代数的包络代数。本文将介绍 $S_3$ 对称三对角代数。这个代数有六个发电机。这些生成器可以看作是正六边形的顶点,因此不相邻的生成器相通,而相邻的生成器满足一对三对角关系。对于$Q$-多项式距离-正则图$\Gamma$,我们将标准模块$V$的张量幂$V^{\otimes 3}$转化为$S_3$-对称三对角代数的模块。我们详细研究了 $\Gamma$ 是汉明图的情况。我们给出了一些猜想和悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The $S_3$-symmetric tridiagonal algebra
The tridiagonal algebra is defined by two generators and two relations, called the tridiagonal relations. Special cases of the tridiagonal algebra include the $q$-Onsager algebra, the positive part of the $q$-deformed enveloping algebra $U_q({\widehat{\mathfrak{sl}}}_2)$, and the enveloping algebra of the Onsager Lie algebra. In this paper, we introduce the $S_3$-symmetric tridiagonal algebra. This algebra has six generators. The generators can be identified with the vertices of a regular hexagon, such that nonadjacent generators commute and adjacent generators satisfy a pair of tridiagonal relations. For a $Q$-polynomial distance-regular graph $\Gamma$ we turn the tensor power $V^{\otimes 3}$ of the standard module $V$ into a module for an $S_3$-symmetric tridiagonal algebra. We investigate in detail the case in which $\Gamma$ is a Hamming graph. We give some conjectures and open problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信