变阶扩散方程的自适应差分法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Joaquín Quintana-Murillo, Santos Bravo Yuste
{"title":"变阶扩散方程的自适应差分法","authors":"Joaquín Quintana-Murillo, Santos Bravo Yuste","doi":"10.1007/s00009-024-02681-6","DOIUrl":null,"url":null,"abstract":"<p>An adaptive finite difference scheme for variable-order fractional-time subdiffusion equations in the Caputo form is studied. The fractional-time derivative is discretized by the L1 procedure but using nonhomogeneous timesteps. The size of these timesteps is chosen by an adaptive algorithm to keep the local error bounded around a preset value, a value that can be chosen at will. For some types of problems, this adaptive method is much faster than the corresponding usual method with fixed timesteps while keeping the local error of the numerical solution around the preset values. These findings turn out to be similar to those found for constant-order fractional diffusion equations.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Adaptive Difference Method for Variable-Order Diffusion Equations\",\"authors\":\"Joaquín Quintana-Murillo, Santos Bravo Yuste\",\"doi\":\"10.1007/s00009-024-02681-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An adaptive finite difference scheme for variable-order fractional-time subdiffusion equations in the Caputo form is studied. The fractional-time derivative is discretized by the L1 procedure but using nonhomogeneous timesteps. The size of these timesteps is chosen by an adaptive algorithm to keep the local error bounded around a preset value, a value that can be chosen at will. For some types of problems, this adaptive method is much faster than the corresponding usual method with fixed timesteps while keeping the local error of the numerical solution around the preset values. These findings turn out to be similar to those found for constant-order fractional diffusion equations.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00009-024-02681-6\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00009-024-02681-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了卡普托形式的变阶分数-时间亚扩散方程的自适应有限差分方案。分时导数采用 L1 程序离散化,但使用非均质时间步长。这些时间步的大小由自适应算法选择,以保持局部误差在预设值附近有界,这个值可以随意选择。对于某些类型的问题,这种自适应方法比采用固定时间步长的相应普通方法要快得多,同时还能将数值解的局部误差保持在预设值附近。这些发现与恒阶分数扩散方程的发现相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An Adaptive Difference Method for Variable-Order Diffusion Equations

An Adaptive Difference Method for Variable-Order Diffusion Equations

An adaptive finite difference scheme for variable-order fractional-time subdiffusion equations in the Caputo form is studied. The fractional-time derivative is discretized by the L1 procedure but using nonhomogeneous timesteps. The size of these timesteps is chosen by an adaptive algorithm to keep the local error bounded around a preset value, a value that can be chosen at will. For some types of problems, this adaptive method is much faster than the corresponding usual method with fixed timesteps while keeping the local error of the numerical solution around the preset values. These findings turn out to be similar to those found for constant-order fractional diffusion equations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信