{"title":"接触系统的对称性和耗散定律","authors":"Javier Pérez Álvarez","doi":"10.1007/s00009-024-02695-0","DOIUrl":null,"url":null,"abstract":"<p>In this article, we focus on the formulation of dissipative mechanical systems through contact Hamiltonian systems. Different forms of symmetry of a contact dynamical system (geometric, dynamic, and gage) are defined to, in the realm of Noether, find their corresponding dissipated quantities. We also address the existence of dissipated quantities associated with a general vector field <i>X</i> on <span>\\(TQ\\times \\mathbb {R},\\)</span> focusing on the case where its contact Hamiltonian function is dissipative.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetries and Dissipation Laws on Contact Systems\",\"authors\":\"Javier Pérez Álvarez\",\"doi\":\"10.1007/s00009-024-02695-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we focus on the formulation of dissipative mechanical systems through contact Hamiltonian systems. Different forms of symmetry of a contact dynamical system (geometric, dynamic, and gage) are defined to, in the realm of Noether, find their corresponding dissipated quantities. We also address the existence of dissipated quantities associated with a general vector field <i>X</i> on <span>\\\\(TQ\\\\times \\\\mathbb {R},\\\\)</span> focusing on the case where its contact Hamiltonian function is dissipative.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00009-024-02695-0\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00009-024-02695-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在这篇文章中,我们重点讨论通过接触哈密顿系统来表述耗散机械系统。我们定义了接触动力系统的不同对称形式(几何对称、动力对称和量规对称),以便在诺特领域找到相应的耗散量。我们还讨论了与\(TQ\times \mathbb {R},\) 上的一般向量场 X 相关的耗散量的存在,重点是其接触哈密顿函数是耗散的情况。
Symmetries and Dissipation Laws on Contact Systems
In this article, we focus on the formulation of dissipative mechanical systems through contact Hamiltonian systems. Different forms of symmetry of a contact dynamical system (geometric, dynamic, and gage) are defined to, in the realm of Noether, find their corresponding dissipated quantities. We also address the existence of dissipated quantities associated with a general vector field X on \(TQ\times \mathbb {R},\) focusing on the case where its contact Hamiltonian function is dissipative.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.