Guozhi Dong, Michael Hintermüller, Kostas Papafitsoros
{"title":"基于近似方向衍生物的 ReLU 神经网络 PDE 最佳控制后裔算法","authors":"Guozhi Dong, Michael Hintermüller, Kostas Papafitsoros","doi":"10.1137/22m1534420","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 3, Page 2314-2349, September 2024. <br/> Abstract. We propose and analyze a numerical algorithm for solving a class of optimal control problems for learning-informed semilinear partial differential equations (PDEs). Such PDEs contain constituents that are in principle unknown and are approximated by nonsmooth ReLU neural networks. We first show that direct smoothing of the ReLU network with the aim of using classical numerical solvers can have disadvantages, such as potentially introducing multiple solutions for the corresponding PDE. This motivates us to devise a numerical algorithm that treats directly the nonsmooth optimal control problem, by employing a descent algorithm inspired by a bundle-free method. Several numerical examples are provided and the efficiency of the algorithm is shown.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Descent Algorithm for the Optimal Control of ReLU Neural Network Informed PDEs Based on Approximate Directional Derivatives\",\"authors\":\"Guozhi Dong, Michael Hintermüller, Kostas Papafitsoros\",\"doi\":\"10.1137/22m1534420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Optimization, Volume 34, Issue 3, Page 2314-2349, September 2024. <br/> Abstract. We propose and analyze a numerical algorithm for solving a class of optimal control problems for learning-informed semilinear partial differential equations (PDEs). Such PDEs contain constituents that are in principle unknown and are approximated by nonsmooth ReLU neural networks. We first show that direct smoothing of the ReLU network with the aim of using classical numerical solvers can have disadvantages, such as potentially introducing multiple solutions for the corresponding PDE. This motivates us to devise a numerical algorithm that treats directly the nonsmooth optimal control problem, by employing a descent algorithm inspired by a bundle-free method. Several numerical examples are provided and the efficiency of the algorithm is shown.\",\"PeriodicalId\":49529,\"journal\":{\"name\":\"SIAM Journal on Optimization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1534420\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1534420","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A Descent Algorithm for the Optimal Control of ReLU Neural Network Informed PDEs Based on Approximate Directional Derivatives
SIAM Journal on Optimization, Volume 34, Issue 3, Page 2314-2349, September 2024. Abstract. We propose and analyze a numerical algorithm for solving a class of optimal control problems for learning-informed semilinear partial differential equations (PDEs). Such PDEs contain constituents that are in principle unknown and are approximated by nonsmooth ReLU neural networks. We first show that direct smoothing of the ReLU network with the aim of using classical numerical solvers can have disadvantages, such as potentially introducing multiple solutions for the corresponding PDE. This motivates us to devise a numerical algorithm that treats directly the nonsmooth optimal control problem, by employing a descent algorithm inspired by a bundle-free method. Several numerical examples are provided and the efficiency of the algorithm is shown.
期刊介绍:
The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.