Antonella S. Antonini, Leandro Luque, Gabriela R. Ferracutti, Ernesto A. Bjerg, Silvia M. Castro, María Luján Ganuza
{"title":"尖晶石VA。尖晶石类矿物视觉分析和分类的新视角","authors":"Antonella S. Antonini, Leandro Luque, Gabriela R. Ferracutti, Ernesto A. Bjerg, Silvia M. Castro, María Luján Ganuza","doi":"10.1007/s12145-024-01393-5","DOIUrl":null,"url":null,"abstract":"<p>Spinel group minerals, found within various rock types, exhibit distinct categorizations based on their host rocks. According to Barnes and Roeder (2001), these minerals can be classified into eight primary groups, each further subdivided into variable numbers of subgroups that can be related to a particular tectonic setting. This classification is based on the cations corresponding to the end-members of the spinel prism and is traditionally analyzed in this prismatic space or using projections of it. In this prismatic representation, several categories tend to overlap, making it impossible to determine which is the tectonic environment in that scenario. An alternative to solve this problem is to generate representations of these groups considering more attributes, making the most of the many values measured during the geochemical analysis. In this paper, we present <i>SpinelVA</i>, a visual exploration tool that integrates Machine Learning techniques and allows the identification of groups using the cations considered by Barnes and Roeder and some additional ones obtained from chemical analysis. <i>SpinelVA</i> allows us to know the tectonic environment of unknown samples by categorizing them according to the Barnes and Roeder classification. Additionally, <i>SpinelVA</i> integrates a collection of visual analysis techniques alongside the already used spinel prism projections and provides a set of interactions that assist geologists in the exploration process. Users can perform a complete data analysis by combining the proposed techniques and associated interactions.</p>","PeriodicalId":49318,"journal":{"name":"Earth Science Informatics","volume":"82 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SpinelVA. A new perspective for the visual analysis and classification of spinel group minerals\",\"authors\":\"Antonella S. Antonini, Leandro Luque, Gabriela R. Ferracutti, Ernesto A. Bjerg, Silvia M. Castro, María Luján Ganuza\",\"doi\":\"10.1007/s12145-024-01393-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Spinel group minerals, found within various rock types, exhibit distinct categorizations based on their host rocks. According to Barnes and Roeder (2001), these minerals can be classified into eight primary groups, each further subdivided into variable numbers of subgroups that can be related to a particular tectonic setting. This classification is based on the cations corresponding to the end-members of the spinel prism and is traditionally analyzed in this prismatic space or using projections of it. In this prismatic representation, several categories tend to overlap, making it impossible to determine which is the tectonic environment in that scenario. An alternative to solve this problem is to generate representations of these groups considering more attributes, making the most of the many values measured during the geochemical analysis. In this paper, we present <i>SpinelVA</i>, a visual exploration tool that integrates Machine Learning techniques and allows the identification of groups using the cations considered by Barnes and Roeder and some additional ones obtained from chemical analysis. <i>SpinelVA</i> allows us to know the tectonic environment of unknown samples by categorizing them according to the Barnes and Roeder classification. Additionally, <i>SpinelVA</i> integrates a collection of visual analysis techniques alongside the already used spinel prism projections and provides a set of interactions that assist geologists in the exploration process. Users can perform a complete data analysis by combining the proposed techniques and associated interactions.</p>\",\"PeriodicalId\":49318,\"journal\":{\"name\":\"Earth Science Informatics\",\"volume\":\"82 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Science Informatics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s12145-024-01393-5\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Science Informatics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12145-024-01393-5","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
SpinelVA. A new perspective for the visual analysis and classification of spinel group minerals
Spinel group minerals, found within various rock types, exhibit distinct categorizations based on their host rocks. According to Barnes and Roeder (2001), these minerals can be classified into eight primary groups, each further subdivided into variable numbers of subgroups that can be related to a particular tectonic setting. This classification is based on the cations corresponding to the end-members of the spinel prism and is traditionally analyzed in this prismatic space or using projections of it. In this prismatic representation, several categories tend to overlap, making it impossible to determine which is the tectonic environment in that scenario. An alternative to solve this problem is to generate representations of these groups considering more attributes, making the most of the many values measured during the geochemical analysis. In this paper, we present SpinelVA, a visual exploration tool that integrates Machine Learning techniques and allows the identification of groups using the cations considered by Barnes and Roeder and some additional ones obtained from chemical analysis. SpinelVA allows us to know the tectonic environment of unknown samples by categorizing them according to the Barnes and Roeder classification. Additionally, SpinelVA integrates a collection of visual analysis techniques alongside the already used spinel prism projections and provides a set of interactions that assist geologists in the exploration process. Users can perform a complete data analysis by combining the proposed techniques and associated interactions.
期刊介绍:
The Earth Science Informatics [ESIN] journal aims at rapid publication of high-quality, current, cutting-edge, and provocative scientific work in the area of Earth Science Informatics as it relates to Earth systems science and space science. This includes articles on the application of formal and computational methods, computational Earth science, spatial and temporal analyses, and all aspects of computer applications to the acquisition, storage, processing, interchange, and visualization of data and information about the materials, properties, processes, features, and phenomena that occur at all scales and locations in the Earth system’s five components (atmosphere, hydrosphere, geosphere, biosphere, cryosphere) and in space (see "About this journal" for more detail). The quarterly journal publishes research, methodology, and software articles, as well as editorials, comments, and book and software reviews. Review articles of relevant findings, topics, and methodologies are also considered.