由积分部分的商生成的乘法群

IF 0.6 3区 数学 Q3 MATHEMATICS
Artūras Dubickas
{"title":"由积分部分的商生成的乘法群","authors":"Artūras Dubickas","doi":"10.1007/s10998-024-00599-w","DOIUrl":null,"url":null,"abstract":"<p>For fixed positive numbers <span>\\(\\alpha \\ne \\beta \\)</span>, we consider the multiplicative group <span>\\({\\mathcal {F}}_{\\alpha ,\\beta }\\)</span> generated by the rational numbers of the form <span>\\(\\frac{\\lfloor \\alpha n\\rfloor }{\\lfloor \\beta n\\rfloor }\\)</span>, where <span>\\(n \\in {\\mathbb {N}}\\)</span> and <span>\\(n \\ge \\max \\big (\\frac{1}{\\alpha },\\frac{1}{\\beta }\\big )\\)</span>. For <span>\\(0&lt;\\alpha &lt;1\\)</span> and <span>\\(\\beta =1\\)</span>, we prove that <span>\\({\\mathcal {F}}_{\\alpha ,1}\\)</span> is the maximal possible group, namely, it is the multiplicative group of all positive rational numbers <span>\\({\\mathbb {Q}}^{+}\\)</span>. The same equality <span>\\({\\mathcal {F}}_{\\alpha ,\\beta }={\\mathbb {Q}}^{+}\\)</span> holds in the case when <span>\\(0&lt; 10 \\alpha \\le \\beta &lt;1\\)</span>. These results produce infinitely many pairs <span>\\((\\alpha ,\\beta )\\)</span>, <span>\\(\\alpha \\ne \\beta \\)</span>, for which a conjecture posed by Kátai and Phong can be confirmed. The only previously known such example is <span>\\((\\alpha ,\\beta )=(\\sqrt{2},1)\\)</span>. We also give a new proof in that case, which is much simpler than the original proof of Kátai and Phong. More generally, we conjecture that <span>\\({\\mathcal {F}}_{\\alpha ,\\beta }={\\mathbb {Q}}^{+}\\)</span> for <span>\\(\\alpha \\ne \\beta \\)</span> if at least one of the numbers <span>\\(\\alpha ,\\beta &gt;0\\)</span> is not an integer.</p>","PeriodicalId":49706,"journal":{"name":"Periodica Mathematica Hungarica","volume":"18 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplicative group generated by quotients of integral parts\",\"authors\":\"Artūras Dubickas\",\"doi\":\"10.1007/s10998-024-00599-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For fixed positive numbers <span>\\\\(\\\\alpha \\\\ne \\\\beta \\\\)</span>, we consider the multiplicative group <span>\\\\({\\\\mathcal {F}}_{\\\\alpha ,\\\\beta }\\\\)</span> generated by the rational numbers of the form <span>\\\\(\\\\frac{\\\\lfloor \\\\alpha n\\\\rfloor }{\\\\lfloor \\\\beta n\\\\rfloor }\\\\)</span>, where <span>\\\\(n \\\\in {\\\\mathbb {N}}\\\\)</span> and <span>\\\\(n \\\\ge \\\\max \\\\big (\\\\frac{1}{\\\\alpha },\\\\frac{1}{\\\\beta }\\\\big )\\\\)</span>. For <span>\\\\(0&lt;\\\\alpha &lt;1\\\\)</span> and <span>\\\\(\\\\beta =1\\\\)</span>, we prove that <span>\\\\({\\\\mathcal {F}}_{\\\\alpha ,1}\\\\)</span> is the maximal possible group, namely, it is the multiplicative group of all positive rational numbers <span>\\\\({\\\\mathbb {Q}}^{+}\\\\)</span>. The same equality <span>\\\\({\\\\mathcal {F}}_{\\\\alpha ,\\\\beta }={\\\\mathbb {Q}}^{+}\\\\)</span> holds in the case when <span>\\\\(0&lt; 10 \\\\alpha \\\\le \\\\beta &lt;1\\\\)</span>. These results produce infinitely many pairs <span>\\\\((\\\\alpha ,\\\\beta )\\\\)</span>, <span>\\\\(\\\\alpha \\\\ne \\\\beta \\\\)</span>, for which a conjecture posed by Kátai and Phong can be confirmed. The only previously known such example is <span>\\\\((\\\\alpha ,\\\\beta )=(\\\\sqrt{2},1)\\\\)</span>. We also give a new proof in that case, which is much simpler than the original proof of Kátai and Phong. More generally, we conjecture that <span>\\\\({\\\\mathcal {F}}_{\\\\alpha ,\\\\beta }={\\\\mathbb {Q}}^{+}\\\\)</span> for <span>\\\\(\\\\alpha \\\\ne \\\\beta \\\\)</span> if at least one of the numbers <span>\\\\(\\\\alpha ,\\\\beta &gt;0\\\\)</span> is not an integer.</p>\",\"PeriodicalId\":49706,\"journal\":{\"name\":\"Periodica Mathematica Hungarica\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10998-024-00599-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-024-00599-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于固定的正数 \(\alpha \ne \beta \),我们考虑乘法群 \({\mathcal {F}}_{\alpha 、\形式的有理数产生的乘法群,其中 \(n in {\mathbb {N}}\) and\(nge \max \big (\frac{1}\{alpha },\frac{1}\{beta }\big )\).对于 \(0<\alpha <1\) 和 \(\beta =1/),我们证明 \({\mathcal {F}}_\{alpha ,1}\) 是最大的可能群,即它是所有正有理数的乘法群 \({/mathbb {Q}}^{+}\).同样的等式 \({\mathcal {F}}_{\alpha ,\beta }=\{mathbb {Q}}^{+}\) 在 \(0< 10 \alpha \le \beta <1\) 的情况下也成立。这些结果产生了无限多的对((\alpha ,\beta)\), (\alpha \ne \beta),对于这些对,Kátai和Phong提出的猜想可以得到证实。之前唯一已知的例子是((\alpha ,\beta)=(\sqrt{2},1)\)。在这种情况下,我们也给出了一个新的证明,它比 Kátai 和 Phong 最初的证明要简单得多。更广义地说,我们猜想,如果至少有一个数 \(\alpha ,\beta >0\) 不是整数,那么对于 \(\alpha \ne \beta \) 来说,({/mathcal {F}}_{\alpha ,\beta }={\mathbb {Q}}^{+}\) 就是整数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiplicative group generated by quotients of integral parts

For fixed positive numbers \(\alpha \ne \beta \), we consider the multiplicative group \({\mathcal {F}}_{\alpha ,\beta }\) generated by the rational numbers of the form \(\frac{\lfloor \alpha n\rfloor }{\lfloor \beta n\rfloor }\), where \(n \in {\mathbb {N}}\) and \(n \ge \max \big (\frac{1}{\alpha },\frac{1}{\beta }\big )\). For \(0<\alpha <1\) and \(\beta =1\), we prove that \({\mathcal {F}}_{\alpha ,1}\) is the maximal possible group, namely, it is the multiplicative group of all positive rational numbers \({\mathbb {Q}}^{+}\). The same equality \({\mathcal {F}}_{\alpha ,\beta }={\mathbb {Q}}^{+}\) holds in the case when \(0< 10 \alpha \le \beta <1\). These results produce infinitely many pairs \((\alpha ,\beta )\), \(\alpha \ne \beta \), for which a conjecture posed by Kátai and Phong can be confirmed. The only previously known such example is \((\alpha ,\beta )=(\sqrt{2},1)\). We also give a new proof in that case, which is much simpler than the original proof of Kátai and Phong. More generally, we conjecture that \({\mathcal {F}}_{\alpha ,\beta }={\mathbb {Q}}^{+}\) for \(\alpha \ne \beta \) if at least one of the numbers \(\alpha ,\beta >0\) is not an integer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
67
审稿时长
>12 weeks
期刊介绍: Periodica Mathematica Hungarica is devoted to publishing research articles in all areas of pure and applied mathematics as well as theoretical computer science. To be published in the Periodica, a paper must be correct, new, and significant. Very strong submissions (upon the consent of the author) will be redirected to Acta Mathematica Hungarica. Periodica Mathematica Hungarica is the journal of the Hungarian Mathematical Society (János Bolyai Mathematical Society). The main profile of the journal is in pure mathematics, being open to applied mathematical papers with significant mathematical content.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信