{"title":"元环组的有符号零和问题","authors":"B. K. Moriya","doi":"10.1007/s10998-024-00593-2","DOIUrl":null,"url":null,"abstract":"<p>Let <i>A</i> be a nonempty subset of the integers and <i>G</i> a finite group written multiplicatively. The constant <span>\\(\\eta _A(G)\\)</span> (<span>\\(s_A(G)\\)</span>) is defined to be the smallest positive integer <i>t</i> such that any sequence of length <i>t</i> of elements of <i>G</i> contains a nonempty <i>A</i>-weighted product one subsequence (that is, the terms of the subsequence could be ordered so that their <i>A</i>-weighted product is the multiplicative identity of the group <i>G</i>) of length at most <span>\\(\\exp (G)\\)</span> (of length <span>\\(\\exp (G)\\)</span>). In this note, we shall calculate the value of <span>\\(\\eta _\\pm (G),D_\\pm (G),E_\\pm (G) \\text{ and } s_\\pm (G)\\)</span> for some metacyclic groups. In 2007, Gao et al. conjectured that <span>\\(s(G)=\\eta (G)+\\exp (G)-1\\)</span> holds for any finite abelian group <i>G</i> (see Gao et al. in Integers 7:A21, 2007). We will prove that this conjecture is true for some metacyclic groups. Furthermore, we study the Harborth constant <span>\\(\\mathfrak {g}_\\pm (G)\\)</span>, where <i>G</i> is a group among one specific class of metacyclic groups.</p>","PeriodicalId":49706,"journal":{"name":"Periodica Mathematica Hungarica","volume":"134 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Signed zero sum problems for metacyclic group\",\"authors\":\"B. K. Moriya\",\"doi\":\"10.1007/s10998-024-00593-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>A</i> be a nonempty subset of the integers and <i>G</i> a finite group written multiplicatively. The constant <span>\\\\(\\\\eta _A(G)\\\\)</span> (<span>\\\\(s_A(G)\\\\)</span>) is defined to be the smallest positive integer <i>t</i> such that any sequence of length <i>t</i> of elements of <i>G</i> contains a nonempty <i>A</i>-weighted product one subsequence (that is, the terms of the subsequence could be ordered so that their <i>A</i>-weighted product is the multiplicative identity of the group <i>G</i>) of length at most <span>\\\\(\\\\exp (G)\\\\)</span> (of length <span>\\\\(\\\\exp (G)\\\\)</span>). In this note, we shall calculate the value of <span>\\\\(\\\\eta _\\\\pm (G),D_\\\\pm (G),E_\\\\pm (G) \\\\text{ and } s_\\\\pm (G)\\\\)</span> for some metacyclic groups. In 2007, Gao et al. conjectured that <span>\\\\(s(G)=\\\\eta (G)+\\\\exp (G)-1\\\\)</span> holds for any finite abelian group <i>G</i> (see Gao et al. in Integers 7:A21, 2007). We will prove that this conjecture is true for some metacyclic groups. Furthermore, we study the Harborth constant <span>\\\\(\\\\mathfrak {g}_\\\\pm (G)\\\\)</span>, where <i>G</i> is a group among one specific class of metacyclic groups.</p>\",\"PeriodicalId\":49706,\"journal\":{\"name\":\"Periodica Mathematica Hungarica\",\"volume\":\"134 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10998-024-00593-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-024-00593-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 A 是整数的一个非空子集,G 是一个乘法写成的有限群。常数 \(\eta _A(G)\) (\(s_A(G)\)) 被定义为最小的正整数 t,使得 G 中任何长度为 t 的元素序列都包含一个非空的 A 加权乘积子序列(也就是说,子序列的项可以被排序,使得它们的 A 加权乘积是群的乘法同一性)、长度为 \(\exp (G)\) (长度为 \(\exp (G)\) )的子序列(即子序列的项可以排序,以便它们的 A 加权乘积是组 G 的乘法同一性)。在本说明中,我们将计算一些元循环群的\(\eta _\pm (G),D_\pm (G),E_\pm (G) \text{ and } s_\pm (G)\) 的值。2007 年,Gao 等人猜想对于任何有限无性群 G,\(s(G)=\eta (G)+\exp (G)-1\) 都成立(见 Gao 等人在 Integers 7:A21, 2007 上的文章)。我们将证明这一猜想对于某些元循环群是成立的。此外,我们还将研究哈伯斯常数(\mathfrak {g}_\pm (G)\),其中 G 是元环群中一个特定类别的群。
Let A be a nonempty subset of the integers and G a finite group written multiplicatively. The constant \(\eta _A(G)\) (\(s_A(G)\)) is defined to be the smallest positive integer t such that any sequence of length t of elements of G contains a nonempty A-weighted product one subsequence (that is, the terms of the subsequence could be ordered so that their A-weighted product is the multiplicative identity of the group G) of length at most \(\exp (G)\) (of length \(\exp (G)\)). In this note, we shall calculate the value of \(\eta _\pm (G),D_\pm (G),E_\pm (G) \text{ and } s_\pm (G)\) for some metacyclic groups. In 2007, Gao et al. conjectured that \(s(G)=\eta (G)+\exp (G)-1\) holds for any finite abelian group G (see Gao et al. in Integers 7:A21, 2007). We will prove that this conjecture is true for some metacyclic groups. Furthermore, we study the Harborth constant \(\mathfrak {g}_\pm (G)\), where G is a group among one specific class of metacyclic groups.
期刊介绍:
Periodica Mathematica Hungarica is devoted to publishing research articles in all areas of pure and applied mathematics as well as theoretical computer science. To be published in the Periodica, a paper must be correct, new, and significant. Very strong submissions (upon the consent of the author) will be redirected to Acta Mathematica Hungarica.
Periodica Mathematica Hungarica is the journal of the Hungarian Mathematical Society (János Bolyai Mathematical Society). The main profile of the journal is in pure mathematics, being open to applied mathematical papers with significant mathematical content.