{"title":"提高存储效率和性能:数据分区技术概览","authors":"Peng-Ju Liu, Cui-Ping Li, Hong Chen","doi":"10.1007/s11390-024-3538-1","DOIUrl":null,"url":null,"abstract":"<p>Data partitioning techniques are pivotal for optimal data placement across storage devices, thereby enhancing resource utilization and overall system throughput. However, the design of effective partition schemes faces multiple challenges, including considerations of the cluster environment, storage device characteristics, optimization objectives, and the balance between partition quality and computational efficiency. Furthermore, dynamic environments necessitate robust partition detection mechanisms. This paper presents a comprehensive survey structured around partition deployment environments, outlining the distinguishing features and applicability of various partitioning strategies while delving into how these challenges are addressed. We discuss partitioning features pertaining to database schema, table data, workload, and runtime metrics. We then delve into the partition generation process, segmenting it into initialization and optimization stages. A comparative analysis of partition generation and update algorithms is provided, emphasizing their suitability for different scenarios and optimization objectives. Additionally, we illustrate the applications of partitioning in prevalent database products and suggest potential future research directions and solutions. This survey aims to foster the implementation, deployment, and updating of high-quality partitions for specific system scenarios.</p>","PeriodicalId":50222,"journal":{"name":"Journal of Computer Science and Technology","volume":"5 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Storage Efficiency and Performance: A Survey of Data Partitioning Techniques\",\"authors\":\"Peng-Ju Liu, Cui-Ping Li, Hong Chen\",\"doi\":\"10.1007/s11390-024-3538-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Data partitioning techniques are pivotal for optimal data placement across storage devices, thereby enhancing resource utilization and overall system throughput. However, the design of effective partition schemes faces multiple challenges, including considerations of the cluster environment, storage device characteristics, optimization objectives, and the balance between partition quality and computational efficiency. Furthermore, dynamic environments necessitate robust partition detection mechanisms. This paper presents a comprehensive survey structured around partition deployment environments, outlining the distinguishing features and applicability of various partitioning strategies while delving into how these challenges are addressed. We discuss partitioning features pertaining to database schema, table data, workload, and runtime metrics. We then delve into the partition generation process, segmenting it into initialization and optimization stages. A comparative analysis of partition generation and update algorithms is provided, emphasizing their suitability for different scenarios and optimization objectives. Additionally, we illustrate the applications of partitioning in prevalent database products and suggest potential future research directions and solutions. This survey aims to foster the implementation, deployment, and updating of high-quality partitions for specific system scenarios.</p>\",\"PeriodicalId\":50222,\"journal\":{\"name\":\"Journal of Computer Science and Technology\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Science and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11390-024-3538-1\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11390-024-3538-1","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Enhancing Storage Efficiency and Performance: A Survey of Data Partitioning Techniques
Data partitioning techniques are pivotal for optimal data placement across storage devices, thereby enhancing resource utilization and overall system throughput. However, the design of effective partition schemes faces multiple challenges, including considerations of the cluster environment, storage device characteristics, optimization objectives, and the balance between partition quality and computational efficiency. Furthermore, dynamic environments necessitate robust partition detection mechanisms. This paper presents a comprehensive survey structured around partition deployment environments, outlining the distinguishing features and applicability of various partitioning strategies while delving into how these challenges are addressed. We discuss partitioning features pertaining to database schema, table data, workload, and runtime metrics. We then delve into the partition generation process, segmenting it into initialization and optimization stages. A comparative analysis of partition generation and update algorithms is provided, emphasizing their suitability for different scenarios and optimization objectives. Additionally, we illustrate the applications of partitioning in prevalent database products and suggest potential future research directions and solutions. This survey aims to foster the implementation, deployment, and updating of high-quality partitions for specific system scenarios.
期刊介绍:
Journal of Computer Science and Technology (JCST), the first English language journal in the computer field published in China, is an international forum for scientists and engineers involved in all aspects of computer science and technology to publish high quality and refereed papers. Papers reporting original research and innovative applications from all parts of the world are welcome. Papers for publication in the journal are selected through rigorous peer review, to ensure originality, timeliness, relevance, and readability. While the journal emphasizes the publication of previously unpublished materials, selected conference papers with exceptional merit that require wider exposure are, at the discretion of the editors, also published, provided they meet the journal''s peer review standards. The journal also seeks clearly written survey and review articles from experts in the field, to promote insightful understanding of the state-of-the-art and technology trends.
Topics covered by Journal of Computer Science and Technology include but are not limited to:
-Computer Architecture and Systems
-Artificial Intelligence and Pattern Recognition
-Computer Networks and Distributed Computing
-Computer Graphics and Multimedia
-Software Systems
-Data Management and Data Mining
-Theory and Algorithms
-Emerging Areas