圆柱域中在一个方向上变得无界的非线性椭圆特征值问题

IF 1.1 4区 数学 Q2 MATHEMATICS, APPLIED
Rama Rawat, Haripada Roy, Prosenjit Roy
{"title":"圆柱域中在一个方向上变得无界的非线性椭圆特征值问题","authors":"Rama Rawat, Haripada Roy, Prosenjit Roy","doi":"10.3233/asy-241907","DOIUrl":null,"url":null,"abstract":"The aim of this work is to characterize the asymptotic behaviour of the first eigenfunction of the generalised p-Laplace operator with mixed (Dirichlet and Neumann) boundary conditions in cylindrical domains when the length of the cylindrical domains tends to infinity. This generalises an earlier work of Chipot et al. (Asymptot. Anal. 85(3–4) (2013) 199–227) where the linear case p=2 is studied. Asymptotic behavior of all the higher eigenvalues of the linear case and the second eigenvalues of general case (using topological degree) for such problems is also studied.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":"31 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear elliptic eigenvalue problems in cylindrical domains becoming unbounded in one direction\",\"authors\":\"Rama Rawat, Haripada Roy, Prosenjit Roy\",\"doi\":\"10.3233/asy-241907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this work is to characterize the asymptotic behaviour of the first eigenfunction of the generalised p-Laplace operator with mixed (Dirichlet and Neumann) boundary conditions in cylindrical domains when the length of the cylindrical domains tends to infinity. This generalises an earlier work of Chipot et al. (Asymptot. Anal. 85(3–4) (2013) 199–227) where the linear case p=2 is studied. Asymptotic behavior of all the higher eigenvalues of the linear case and the second eigenvalues of general case (using topological degree) for such problems is also studied.\",\"PeriodicalId\":55438,\"journal\":{\"name\":\"Asymptotic Analysis\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptotic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3233/asy-241907\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-241907","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

这项工作的目的是描述当圆柱形域的长度趋于无穷大时,在圆柱形域中具有混合(迪里希特和诺伊曼)边界条件的广义 p-Laplace 算子的第一个特征函数的渐近行为。这概括了 Chipot 等人的早期研究成果(Asymptot.Anal.85(3-4) (2013) 199-227)的研究,其中研究了 p=2 的线性情况。此外,还研究了线性情况下所有高特征值的渐近行为,以及一般情况下的第二特征值(使用拓扑度)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear elliptic eigenvalue problems in cylindrical domains becoming unbounded in one direction
The aim of this work is to characterize the asymptotic behaviour of the first eigenfunction of the generalised p-Laplace operator with mixed (Dirichlet and Neumann) boundary conditions in cylindrical domains when the length of the cylindrical domains tends to infinity. This generalises an earlier work of Chipot et al. (Asymptot. Anal. 85(3–4) (2013) 199–227) where the linear case p=2 is studied. Asymptotic behavior of all the higher eigenvalues of the linear case and the second eigenvalues of general case (using topological degree) for such problems is also studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asymptotic Analysis
Asymptotic Analysis 数学-应用数学
CiteScore
1.90
自引率
7.10%
发文量
91
审稿时长
6 months
期刊介绍: The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信