{"title":"圆柱域中在一个方向上变得无界的非线性椭圆特征值问题","authors":"Rama Rawat, Haripada Roy, Prosenjit Roy","doi":"10.3233/asy-241907","DOIUrl":null,"url":null,"abstract":"The aim of this work is to characterize the asymptotic behaviour of the first eigenfunction of the generalised p-Laplace operator with mixed (Dirichlet and Neumann) boundary conditions in cylindrical domains when the length of the cylindrical domains tends to infinity. This generalises an earlier work of Chipot et al. (Asymptot. Anal. 85(3–4) (2013) 199–227) where the linear case p=2 is studied. Asymptotic behavior of all the higher eigenvalues of the linear case and the second eigenvalues of general case (using topological degree) for such problems is also studied.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear elliptic eigenvalue problems in cylindrical domains becoming unbounded in one direction\",\"authors\":\"Rama Rawat, Haripada Roy, Prosenjit Roy\",\"doi\":\"10.3233/asy-241907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this work is to characterize the asymptotic behaviour of the first eigenfunction of the generalised p-Laplace operator with mixed (Dirichlet and Neumann) boundary conditions in cylindrical domains when the length of the cylindrical domains tends to infinity. This generalises an earlier work of Chipot et al. (Asymptot. Anal. 85(3–4) (2013) 199–227) where the linear case p=2 is studied. Asymptotic behavior of all the higher eigenvalues of the linear case and the second eigenvalues of general case (using topological degree) for such problems is also studied.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3233/asy-241907\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-241907","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Nonlinear elliptic eigenvalue problems in cylindrical domains becoming unbounded in one direction
The aim of this work is to characterize the asymptotic behaviour of the first eigenfunction of the generalised p-Laplace operator with mixed (Dirichlet and Neumann) boundary conditions in cylindrical domains when the length of the cylindrical domains tends to infinity. This generalises an earlier work of Chipot et al. (Asymptot. Anal. 85(3–4) (2013) 199–227) where the linear case p=2 is studied. Asymptotic behavior of all the higher eigenvalues of the linear case and the second eigenvalues of general case (using topological degree) for such problems is also studied.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.