{"title":"全形曲线和投影面中任意超曲面族第二主定理的差分类似物","authors":"T. B. Cao, N. V. Thin, S. D. Quang","doi":"10.1007/s10476-024-00036-7","DOIUrl":null,"url":null,"abstract":"<div><p>Our goal in this paper is to establish some difference analogue of second main theorems for holomorphic curves into projective varieties intersecting arbitrary families of <i>c</i>-periodical hypersurfaces (fixed or moving) with truncated counting functions in various cases. Our results generalize and improve the previous results in this topic.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Difference analogues of the second main theorem for holomorphic curves and arbitrary families of hypersurfaces in projective varieties\",\"authors\":\"T. B. Cao, N. V. Thin, S. D. Quang\",\"doi\":\"10.1007/s10476-024-00036-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Our goal in this paper is to establish some difference analogue of second main theorems for holomorphic curves into projective varieties intersecting arbitrary families of <i>c</i>-periodical hypersurfaces (fixed or moving) with truncated counting functions in various cases. Our results generalize and improve the previous results in this topic.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-024-00036-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-024-00036-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文的目标是在各种情况下,建立与具有截断计数函数的 c 周期超曲面(固定或移动)的任意族相交的全形曲线进入投影变种的第二主定理的一些差分类比。我们的结果概括并改进了这一课题以前的结果。
Difference analogues of the second main theorem for holomorphic curves and arbitrary families of hypersurfaces in projective varieties
Our goal in this paper is to establish some difference analogue of second main theorems for holomorphic curves into projective varieties intersecting arbitrary families of c-periodical hypersurfaces (fixed or moving) with truncated counting functions in various cases. Our results generalize and improve the previous results in this topic.