基于黑磷的动态可调半环法诺谐振器

IF 2.5 4区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Junyan Cheng, Weiliang Zeng, Wen Zhang, Yuanmei Xu, Kunhua Wen, Weijun Sun, Xiaozhao Fang, Yonghui Huang, Xue-Shi Li
{"title":"基于黑磷的动态可调半环法诺谐振器","authors":"Junyan Cheng, Weiliang Zeng, Wen Zhang, Yuanmei Xu, Kunhua Wen, Weijun Sun, Xiaozhao Fang, Yonghui Huang, Xue-Shi Li","doi":"10.1002/pssr.202400114","DOIUrl":null,"url":null,"abstract":"A tunable material black phosphorus (BP) terahertz (THz) half‐ring Fano resonator is proposed, exhibiting enhanced sensitivity, tunable frequency parameters, and the flexible sensing range. A half‐ring is positioned above the main channel, while a groove is excavated beneath it to produce the Fano resonance. The discrete mode of the half‐ring is coupled with the continuous mode of the groove, leading to a significantly enhanced sensitivity. This sensor can pick up subtle changes in the surrounding environment. Additionally, the incorporation of BP into the half‐ring positioned above the channel enables the flexible adjustment of the Fano resonator's resonant frequency. This adjustment is achieved through the manipulation of the electron doping concentration of the BP material. At the third‐order resonance around 5.81 THz, the frequency shift margin can reach 160 GHz. Adjusting the structural parameters of the Fano resonator, such as the radius of its outer ring, the distance of this ring to the main channel, and the groove's height, significantly affects its transmission spectrum. The Fano resonator demonstrates its considerable potential for applications in the field of integrated electronics. It not only provides an innovative design perspective, but also lays the foundation for the study of THz systems.This article is protected by copyright. All rights reserved.","PeriodicalId":54619,"journal":{"name":"Physica Status Solidi-Rapid Research Letters","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamically tunable half‐ring Fano resonator based on black phosphorus\",\"authors\":\"Junyan Cheng, Weiliang Zeng, Wen Zhang, Yuanmei Xu, Kunhua Wen, Weijun Sun, Xiaozhao Fang, Yonghui Huang, Xue-Shi Li\",\"doi\":\"10.1002/pssr.202400114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A tunable material black phosphorus (BP) terahertz (THz) half‐ring Fano resonator is proposed, exhibiting enhanced sensitivity, tunable frequency parameters, and the flexible sensing range. A half‐ring is positioned above the main channel, while a groove is excavated beneath it to produce the Fano resonance. The discrete mode of the half‐ring is coupled with the continuous mode of the groove, leading to a significantly enhanced sensitivity. This sensor can pick up subtle changes in the surrounding environment. Additionally, the incorporation of BP into the half‐ring positioned above the channel enables the flexible adjustment of the Fano resonator's resonant frequency. This adjustment is achieved through the manipulation of the electron doping concentration of the BP material. At the third‐order resonance around 5.81 THz, the frequency shift margin can reach 160 GHz. Adjusting the structural parameters of the Fano resonator, such as the radius of its outer ring, the distance of this ring to the main channel, and the groove's height, significantly affects its transmission spectrum. The Fano resonator demonstrates its considerable potential for applications in the field of integrated electronics. It not only provides an innovative design perspective, but also lays the foundation for the study of THz systems.This article is protected by copyright. All rights reserved.\",\"PeriodicalId\":54619,\"journal\":{\"name\":\"Physica Status Solidi-Rapid Research Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Status Solidi-Rapid Research Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/pssr.202400114\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi-Rapid Research Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/pssr.202400114","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种可调谐材料黑磷(BP)太赫兹(THz)半环法诺谐振器,它具有更高的灵敏度、可调谐的频率参数和灵活的传感范围。半环位于主通道上方,在其下方开凿了一个凹槽,以产生法诺共振。半环的离散模式与凹槽的连续模式耦合,从而大大提高了灵敏度。这种传感器可以捕捉到周围环境的细微变化。此外,在通道上方的半环中加入 BP,可以灵活调节法诺谐振器的谐振频率。这种调整是通过操纵 BP 材料的电子掺杂浓度实现的。在 5.81 太赫兹左右的三阶共振频率下,频移余量可达 160 千兆赫。调整法诺谐振器的结构参数,如外环半径、外环到主通道的距离以及凹槽的高度,都会显著影响其传输频谱。法诺谐振器展示了其在集成电子领域的巨大应用潜力。它不仅提供了一个创新的设计视角,还为太赫兹系统的研究奠定了基础。本文受版权保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamically tunable half‐ring Fano resonator based on black phosphorus
A tunable material black phosphorus (BP) terahertz (THz) half‐ring Fano resonator is proposed, exhibiting enhanced sensitivity, tunable frequency parameters, and the flexible sensing range. A half‐ring is positioned above the main channel, while a groove is excavated beneath it to produce the Fano resonance. The discrete mode of the half‐ring is coupled with the continuous mode of the groove, leading to a significantly enhanced sensitivity. This sensor can pick up subtle changes in the surrounding environment. Additionally, the incorporation of BP into the half‐ring positioned above the channel enables the flexible adjustment of the Fano resonator's resonant frequency. This adjustment is achieved through the manipulation of the electron doping concentration of the BP material. At the third‐order resonance around 5.81 THz, the frequency shift margin can reach 160 GHz. Adjusting the structural parameters of the Fano resonator, such as the radius of its outer ring, the distance of this ring to the main channel, and the groove's height, significantly affects its transmission spectrum. The Fano resonator demonstrates its considerable potential for applications in the field of integrated electronics. It not only provides an innovative design perspective, but also lays the foundation for the study of THz systems.This article is protected by copyright. All rights reserved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica Status Solidi-Rapid Research Letters
Physica Status Solidi-Rapid Research Letters 物理-材料科学:综合
CiteScore
5.20
自引率
3.60%
发文量
208
审稿时长
1.4 months
期刊介绍: Physica status solidi (RRL) - Rapid Research Letters was designed to offer extremely fast publication times and is currently one of the fastest double peer-reviewed publication media in solid state and materials physics. Average times are 11 days from submission to first editorial decision, and 12 days from acceptance to online publication. It communicates important findings with a high degree of novelty and need for express publication, as well as other results of immediate interest to the solid-state physics and materials science community. Published Letters require approval by at least two independent reviewers. The journal covers topics such as preparation, structure and simulation of advanced materials, theoretical and experimental investigations of the atomistic and electronic structure, optical, magnetic, superconducting, ferroelectric and other properties of solids, nanostructures and low-dimensional systems as well as device applications. Rapid Research Letters particularly invites papers from interdisciplinary and emerging new areas of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信