幂级数环中的除法理想 $$A+XB[\![X]\!]$$$

IF 1 3区 数学 Q1 MATHEMATICS
Hamed Ahmed
{"title":"幂级数环中的除法理想 $$A+XB[\\![X]\\!]$$$","authors":"Hamed Ahmed","doi":"10.1007/s40840-024-01724-1","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(A\\subseteq B\\)</span> be an extension of integral domains, <span>\\(B[\\![X]\\!]\\)</span> be the power series ring over <i>B</i>, and <span>\\(R=A + XB[\\![X]\\!]\\)</span> be a subring of <span>\\(B[\\![X]\\!].\\)</span> In this paper, we give a complete description of <i>v</i>-invertible <i>v</i>-ideals (with nonzero trace in <i>A</i>) of <i>R</i>. We show that if <i>B</i> is a completely integrally closed domain and <i>I</i> is a fractional divisorial <i>v</i>-invertible ideal of <i>R</i> with nonzero trace over <i>A</i>, then <span>\\(I = u(J_1 + XJ_2[\\![X]\\!])\\)</span> for some <span>\\(u\\in qf(R),\\)</span> <span>\\(J_2\\)</span> an integral divisorial <i>v</i>-invertible ideal of <i>B</i> and <span>\\(J_1\\subseteq J_2\\)</span> a nonzero ideal of <i>A</i>.</p>","PeriodicalId":50718,"journal":{"name":"Bulletin of the Malaysian Mathematical Sciences Society","volume":"21 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Divisorial Ideals in the Power Series Ring $$A+XB[\\\\![X]\\\\!]$$\",\"authors\":\"Hamed Ahmed\",\"doi\":\"10.1007/s40840-024-01724-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(A\\\\subseteq B\\\\)</span> be an extension of integral domains, <span>\\\\(B[\\\\![X]\\\\!]\\\\)</span> be the power series ring over <i>B</i>, and <span>\\\\(R=A + XB[\\\\![X]\\\\!]\\\\)</span> be a subring of <span>\\\\(B[\\\\![X]\\\\!].\\\\)</span> In this paper, we give a complete description of <i>v</i>-invertible <i>v</i>-ideals (with nonzero trace in <i>A</i>) of <i>R</i>. We show that if <i>B</i> is a completely integrally closed domain and <i>I</i> is a fractional divisorial <i>v</i>-invertible ideal of <i>R</i> with nonzero trace over <i>A</i>, then <span>\\\\(I = u(J_1 + XJ_2[\\\\![X]\\\\!])\\\\)</span> for some <span>\\\\(u\\\\in qf(R),\\\\)</span> <span>\\\\(J_2\\\\)</span> an integral divisorial <i>v</i>-invertible ideal of <i>B</i> and <span>\\\\(J_1\\\\subseteq J_2\\\\)</span> a nonzero ideal of <i>A</i>.</p>\",\"PeriodicalId\":50718,\"journal\":{\"name\":\"Bulletin of the Malaysian Mathematical Sciences Society\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Malaysian Mathematical Sciences Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40840-024-01724-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Malaysian Mathematical Sciences Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40840-024-01724-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 \(A\subseteq B\) 是一个积分域的扩展,\(B[\![X]\!]\) 是关于 B 的幂级数环,并且 \(R=A + XB[\![X]\!]\)是\(B[\![X]\!].\) 在本文中,我们给出了关于 R 的 v-invertible v-ideals (在 A 中的迹不为零)的完整描述。我们证明了,如果 B 是一个完全整闭域,并且 I 是 R 的一个在 A 上有非零迹线的分数可分 v-invertible 理想,那么 \(I = u(J_1 + XJ_2[\![X]\!])\) for some \(u\in qf(R),\)\(J_2/)是B的一个整除v-可逆理想,而(J_1/subseteq J_2/)是A的一个非零理想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Divisorial Ideals in the Power Series Ring $$A+XB[\![X]\!]$$

Let \(A\subseteq B\) be an extension of integral domains, \(B[\![X]\!]\) be the power series ring over B, and \(R=A + XB[\![X]\!]\) be a subring of \(B[\![X]\!].\) In this paper, we give a complete description of v-invertible v-ideals (with nonzero trace in A) of R. We show that if B is a completely integrally closed domain and I is a fractional divisorial v-invertible ideal of R with nonzero trace over A, then \(I = u(J_1 + XJ_2[\![X]\!])\) for some \(u\in qf(R),\) \(J_2\) an integral divisorial v-invertible ideal of B and \(J_1\subseteq J_2\) a nonzero ideal of A.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
8.30%
发文量
176
审稿时长
3 months
期刊介绍: This journal publishes original research articles and expository survey articles in all branches of mathematics. Recent issues have included articles on such topics as Spectral synthesis for the operator space projective tensor product of C*-algebras; Topological structures on LA-semigroups; Implicit iteration methods for variational inequalities in Banach spaces; and The Quarter-Sweep Geometric Mean method for solving second kind linear fredholm integral equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信