SDANet:用于人群计数的规模变形感知网络

IF 1 4区 计算机科学 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Jianyong Wang, Xiangyu Guo, Qilei Li, Ahmed M. Abdelmoniem, Mingliang Gao
{"title":"SDANet:用于人群计数的规模变形感知网络","authors":"Jianyong Wang, Xiangyu Guo, Qilei Li, Ahmed M. Abdelmoniem, Mingliang Gao","doi":"10.1117/1.jei.33.4.043002","DOIUrl":null,"url":null,"abstract":"Crowd counting aims to derive information about crowd density by quantifying the number of individuals in an image or video. It offers crucial insights applicable to various domains, e.g., secure, efficient decision-making, and management. However, scale variation and irregular shapes of heads pose intricate challenges. To address these challenges, we propose a scale-deformation awareness network (SDANet). Specifically, a scale awareness module is introduced to address the scale variation. It can capture long-distance dependencies and preserve precise spatial information by readjusting weights in height and width directions. Concurrently, a deformation awareness module is introduced to solve the challenge of head deformation. It adjusts the sampling position of the convolution kernel through deformable convolution and learning offset. Experimental results on four crowd-counting datasets prove the superiority of SDANet in accuracy, efficiency, and robustness.","PeriodicalId":54843,"journal":{"name":"Journal of Electronic Imaging","volume":"132 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SDANet: scale-deformation awareness network for crowd counting\",\"authors\":\"Jianyong Wang, Xiangyu Guo, Qilei Li, Ahmed M. Abdelmoniem, Mingliang Gao\",\"doi\":\"10.1117/1.jei.33.4.043002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crowd counting aims to derive information about crowd density by quantifying the number of individuals in an image or video. It offers crucial insights applicable to various domains, e.g., secure, efficient decision-making, and management. However, scale variation and irregular shapes of heads pose intricate challenges. To address these challenges, we propose a scale-deformation awareness network (SDANet). Specifically, a scale awareness module is introduced to address the scale variation. It can capture long-distance dependencies and preserve precise spatial information by readjusting weights in height and width directions. Concurrently, a deformation awareness module is introduced to solve the challenge of head deformation. It adjusts the sampling position of the convolution kernel through deformable convolution and learning offset. Experimental results on four crowd-counting datasets prove the superiority of SDANet in accuracy, efficiency, and robustness.\",\"PeriodicalId\":54843,\"journal\":{\"name\":\"Journal of Electronic Imaging\",\"volume\":\"132 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Imaging\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1117/1.jei.33.4.043002\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Imaging","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1117/1.jei.33.4.043002","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

人群计数旨在通过量化图像或视频中的个体数量来获取有关人群密度的信息。它提供了适用于各种领域(如安全、高效决策和管理)的重要见解。然而,尺度变化和头部的不规则形状带来了复杂的挑战。为了应对这些挑战,我们提出了尺度变形感知网络(SDANet)。具体来说,我们引入了一个规模感知模块来解决规模变化问题。它可以捕捉长距离依赖关系,并通过重新调整高度和宽度方向的权重来保留精确的空间信息。同时,为解决头部变形的难题,还引入了变形感知模块。它通过可变形卷积和学习偏移来调整卷积核的采样位置。在四个人群计数数据集上的实验结果证明了 SDANet 在准确性、效率和鲁棒性方面的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SDANet: scale-deformation awareness network for crowd counting
Crowd counting aims to derive information about crowd density by quantifying the number of individuals in an image or video. It offers crucial insights applicable to various domains, e.g., secure, efficient decision-making, and management. However, scale variation and irregular shapes of heads pose intricate challenges. To address these challenges, we propose a scale-deformation awareness network (SDANet). Specifically, a scale awareness module is introduced to address the scale variation. It can capture long-distance dependencies and preserve precise spatial information by readjusting weights in height and width directions. Concurrently, a deformation awareness module is introduced to solve the challenge of head deformation. It adjusts the sampling position of the convolution kernel through deformable convolution and learning offset. Experimental results on four crowd-counting datasets prove the superiority of SDANet in accuracy, efficiency, and robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electronic Imaging
Journal of Electronic Imaging 工程技术-成像科学与照相技术
CiteScore
1.70
自引率
27.30%
发文量
341
审稿时长
4.0 months
期刊介绍: The Journal of Electronic Imaging publishes peer-reviewed papers in all technology areas that make up the field of electronic imaging and are normally considered in the design, engineering, and applications of electronic imaging systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信