V. Kh. Depuev, M. G. Deminov, G. F. Deminova, A. Kh. Depueva
{"title":"中纬度地区不同经度的 NmF2 变异:地磁活动的作用","authors":"V. Kh. Depuev, M. G. Deminov, G. F. Deminova, A. Kh. Depueva","doi":"10.1134/S0016793224600073","DOIUrl":null,"url":null,"abstract":"<p>Based on data from mid-latitude ionospheric stations at close corrected geomagnetic latitudes, the properties of the variability in the <i>F</i>2 layer peak density (<i>NmF</i>2) at different longitudes were analyzed during increased (48 > <i>ap</i>(τ) > 27) and high (<i>ap</i>(τ) > 48) geomagnetic activity, where <i>ap</i>(τ) is the weighted average <i>ap</i>-index of this activity. The standard deviation σ of <i>Nm</i> fluctuations with respect to the quiet level and the average shift of these fluctuations <i>x</i><sub>ave</sub> were used as characteristics of this variability. It was found that at all analyzed stations, the variance σ <sup>2</sup> for increased geomagnetic activity is greater than for quiet conditions but hardly differs from σ <sup>2</sup> for high geomagnetic activity. For all analyzed cases, the average shift <i>x</i><sub>ave</sub> < 0, and for high geomagnetic activity, the absolute value of <i>x</i><sub>ave</sub> is greater than for increased geomagnetic activity. The difference in <i>x</i><sub>ave</sub> values between the analyzed stations is quite large. One reason for this difference may be related to the dependence of <i>x</i><sub>ave</sub> on geomagnetic latitudes. Approximations of the geomagnetic field by the tilted dipole (TD), eccentric dipole (ED), or using corrected geomagnetic (CGM) coordinates were used to select these latitudes. It was found that the dependence of <i>x</i><sub>ave</sub> on ED latitude is more accurate than the dependence of <i>x</i><sub>ave</sub> on TD latitude and, moreover, the dependence of <i>x</i><sub>ave</sub> on CGM latitude. Therefore, ED latitudes, and not CGM latitudes, are optimal for accounting for storm effects on the <i>F</i>2 layer peak density at mid-latitudes. This conclusion has apparently been obtained for the first time.</p>","PeriodicalId":55597,"journal":{"name":"Geomagnetism and Aeronomy","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NmF2 Variability at Different Longitudes in Mid-Latitudes: The Role of Geomagnetic Activity\",\"authors\":\"V. Kh. Depuev, M. G. Deminov, G. F. Deminova, A. Kh. Depueva\",\"doi\":\"10.1134/S0016793224600073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Based on data from mid-latitude ionospheric stations at close corrected geomagnetic latitudes, the properties of the variability in the <i>F</i>2 layer peak density (<i>NmF</i>2) at different longitudes were analyzed during increased (48 > <i>ap</i>(τ) > 27) and high (<i>ap</i>(τ) > 48) geomagnetic activity, where <i>ap</i>(τ) is the weighted average <i>ap</i>-index of this activity. The standard deviation σ of <i>Nm</i> fluctuations with respect to the quiet level and the average shift of these fluctuations <i>x</i><sub>ave</sub> were used as characteristics of this variability. It was found that at all analyzed stations, the variance σ <sup>2</sup> for increased geomagnetic activity is greater than for quiet conditions but hardly differs from σ <sup>2</sup> for high geomagnetic activity. For all analyzed cases, the average shift <i>x</i><sub>ave</sub> < 0, and for high geomagnetic activity, the absolute value of <i>x</i><sub>ave</sub> is greater than for increased geomagnetic activity. The difference in <i>x</i><sub>ave</sub> values between the analyzed stations is quite large. One reason for this difference may be related to the dependence of <i>x</i><sub>ave</sub> on geomagnetic latitudes. Approximations of the geomagnetic field by the tilted dipole (TD), eccentric dipole (ED), or using corrected geomagnetic (CGM) coordinates were used to select these latitudes. It was found that the dependence of <i>x</i><sub>ave</sub> on ED latitude is more accurate than the dependence of <i>x</i><sub>ave</sub> on TD latitude and, moreover, the dependence of <i>x</i><sub>ave</sub> on CGM latitude. Therefore, ED latitudes, and not CGM latitudes, are optimal for accounting for storm effects on the <i>F</i>2 layer peak density at mid-latitudes. This conclusion has apparently been obtained for the first time.</p>\",\"PeriodicalId\":55597,\"journal\":{\"name\":\"Geomagnetism and Aeronomy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomagnetism and Aeronomy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016793224600073\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomagnetism and Aeronomy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0016793224600073","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
NmF2 Variability at Different Longitudes in Mid-Latitudes: The Role of Geomagnetic Activity
Based on data from mid-latitude ionospheric stations at close corrected geomagnetic latitudes, the properties of the variability in the F2 layer peak density (NmF2) at different longitudes were analyzed during increased (48 > ap(τ) > 27) and high (ap(τ) > 48) geomagnetic activity, where ap(τ) is the weighted average ap-index of this activity. The standard deviation σ of Nm fluctuations with respect to the quiet level and the average shift of these fluctuations xave were used as characteristics of this variability. It was found that at all analyzed stations, the variance σ 2 for increased geomagnetic activity is greater than for quiet conditions but hardly differs from σ 2 for high geomagnetic activity. For all analyzed cases, the average shift xave < 0, and for high geomagnetic activity, the absolute value of xave is greater than for increased geomagnetic activity. The difference in xave values between the analyzed stations is quite large. One reason for this difference may be related to the dependence of xave on geomagnetic latitudes. Approximations of the geomagnetic field by the tilted dipole (TD), eccentric dipole (ED), or using corrected geomagnetic (CGM) coordinates were used to select these latitudes. It was found that the dependence of xave on ED latitude is more accurate than the dependence of xave on TD latitude and, moreover, the dependence of xave on CGM latitude. Therefore, ED latitudes, and not CGM latitudes, are optimal for accounting for storm effects on the F2 layer peak density at mid-latitudes. This conclusion has apparently been obtained for the first time.
期刊介绍:
Geomagnetism and Aeronomy is a bimonthly periodical that covers the fields of interplanetary space; geoeffective solar events; the magnetosphere; the ionosphere; the upper and middle atmosphere; the action of solar variability and activity on atmospheric parameters and climate; the main magnetic field and its secular variations, excursion, and inversion; and other related topics.