P C Sreeparvathy, Rovi Angelo B Villaos, Zhi-Quan Huang and Feng-Chuan Chuang
{"title":"Y3InC 中的高阶拓扑狄拉克相:第一原理研究","authors":"P C Sreeparvathy, Rovi Angelo B Villaos, Zhi-Quan Huang and Feng-Chuan Chuang","doi":"10.1088/1367-2630/ad59ff","DOIUrl":null,"url":null,"abstract":"Higher-order topological insulators hosting intriguing topologically protected hinge or corner states are of significant research interest. However, materials that possess higher-order topological hinge states associated with gapless bulk Dirac phases still need to be explored. Using first-principles calculations with hybrid exchange functional, we explore the electronic structure and topological properties of Y3InC and a few of its sister compounds, totaling 16 bulk materials. A symmetry-protected triple point phase, with dominated d-t2g character, is observed in Y3InC without spin–orbit coupling (SOC). Interestingly, the SOC induces a twin Dirac node phase in the bulk Y3InC. Furthermore, the computed Z4 topological invariant reveals the higher-order topological nature of investigated materials. To demonstrate the gapless hinge states, we conduct edge state calculations using a rod-shaped geometry of Y3InC. Remarkably, Y3InC is identified to host multi-Dirac nodes in the bulk and surface phases together with the higher-order hinge states. These results lay the groundwork for further experimental and theoretical investigations into cubic antiperovskite materials for higher-order topological phases.","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":"47 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher-order topological Dirac phase in Y3InC: a first-principles study\",\"authors\":\"P C Sreeparvathy, Rovi Angelo B Villaos, Zhi-Quan Huang and Feng-Chuan Chuang\",\"doi\":\"10.1088/1367-2630/ad59ff\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Higher-order topological insulators hosting intriguing topologically protected hinge or corner states are of significant research interest. However, materials that possess higher-order topological hinge states associated with gapless bulk Dirac phases still need to be explored. Using first-principles calculations with hybrid exchange functional, we explore the electronic structure and topological properties of Y3InC and a few of its sister compounds, totaling 16 bulk materials. A symmetry-protected triple point phase, with dominated d-t2g character, is observed in Y3InC without spin–orbit coupling (SOC). Interestingly, the SOC induces a twin Dirac node phase in the bulk Y3InC. Furthermore, the computed Z4 topological invariant reveals the higher-order topological nature of investigated materials. To demonstrate the gapless hinge states, we conduct edge state calculations using a rod-shaped geometry of Y3InC. Remarkably, Y3InC is identified to host multi-Dirac nodes in the bulk and surface phases together with the higher-order hinge states. These results lay the groundwork for further experimental and theoretical investigations into cubic antiperovskite materials for higher-order topological phases.\",\"PeriodicalId\":19181,\"journal\":{\"name\":\"New Journal of Physics\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1367-2630/ad59ff\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1367-2630/ad59ff","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Higher-order topological Dirac phase in Y3InC: a first-principles study
Higher-order topological insulators hosting intriguing topologically protected hinge or corner states are of significant research interest. However, materials that possess higher-order topological hinge states associated with gapless bulk Dirac phases still need to be explored. Using first-principles calculations with hybrid exchange functional, we explore the electronic structure and topological properties of Y3InC and a few of its sister compounds, totaling 16 bulk materials. A symmetry-protected triple point phase, with dominated d-t2g character, is observed in Y3InC without spin–orbit coupling (SOC). Interestingly, the SOC induces a twin Dirac node phase in the bulk Y3InC. Furthermore, the computed Z4 topological invariant reveals the higher-order topological nature of investigated materials. To demonstrate the gapless hinge states, we conduct edge state calculations using a rod-shaped geometry of Y3InC. Remarkably, Y3InC is identified to host multi-Dirac nodes in the bulk and surface phases together with the higher-order hinge states. These results lay the groundwork for further experimental and theoretical investigations into cubic antiperovskite materials for higher-order topological phases.
期刊介绍:
New Journal of Physics publishes across the whole of physics, encompassing pure, applied, theoretical and experimental research, as well as interdisciplinary topics where physics forms the central theme. All content is permanently free to read and the journal is funded by an article publication charge.