Gennaro Tucci, Ramin Golestanian and Suropriya Saha
{"title":"相思胶体混合物中的非互惠集体动力学","authors":"Gennaro Tucci, Ramin Golestanian and Suropriya Saha","doi":"10.1088/1367-2630/ad50ff","DOIUrl":null,"url":null,"abstract":"A multicomponent mixture of Janus colloids with distinct catalytic coats and phoretic mobilities is a promising theoretical system to explore the collective behavior arising from nonreciprocal interactions. An active colloid produces (or consumes) chemicals, self-propels, drifts along chemical gradients, and rotates its intrinsic polarity to align with a gradient. As a result the connection from microscopics to continuum theories through coarse-graining couples densities and polarization fields in unique ways. Focusing on a binary mixture, we show that these couplings render the unpatterned reference state unstable to small perturbations through a variety of instabilities including oscillatory ones which arise on crossing an exceptional point or through a Hopf bifurcation. For fast relaxation of the polar fields, they can be eliminated in favor of the density fields to obtain a microscopic realization of the Nonreciprocal Cahn–Hilliard model for two conserved species with two distinct sources of non-reciprocity, one in the interaction coefficient and the other in the interfacial tension. Our work establishes Janus colloids as a versatile model for a bottom-up approach to both scalar and polar active mixtures.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonreciprocal collective dynamics in a mixture of phoretic Janus colloids\",\"authors\":\"Gennaro Tucci, Ramin Golestanian and Suropriya Saha\",\"doi\":\"10.1088/1367-2630/ad50ff\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A multicomponent mixture of Janus colloids with distinct catalytic coats and phoretic mobilities is a promising theoretical system to explore the collective behavior arising from nonreciprocal interactions. An active colloid produces (or consumes) chemicals, self-propels, drifts along chemical gradients, and rotates its intrinsic polarity to align with a gradient. As a result the connection from microscopics to continuum theories through coarse-graining couples densities and polarization fields in unique ways. Focusing on a binary mixture, we show that these couplings render the unpatterned reference state unstable to small perturbations through a variety of instabilities including oscillatory ones which arise on crossing an exceptional point or through a Hopf bifurcation. For fast relaxation of the polar fields, they can be eliminated in favor of the density fields to obtain a microscopic realization of the Nonreciprocal Cahn–Hilliard model for two conserved species with two distinct sources of non-reciprocity, one in the interaction coefficient and the other in the interfacial tension. Our work establishes Janus colloids as a versatile model for a bottom-up approach to both scalar and polar active mixtures.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1367-2630/ad50ff\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1367-2630/ad50ff","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Nonreciprocal collective dynamics in a mixture of phoretic Janus colloids
A multicomponent mixture of Janus colloids with distinct catalytic coats and phoretic mobilities is a promising theoretical system to explore the collective behavior arising from nonreciprocal interactions. An active colloid produces (or consumes) chemicals, self-propels, drifts along chemical gradients, and rotates its intrinsic polarity to align with a gradient. As a result the connection from microscopics to continuum theories through coarse-graining couples densities and polarization fields in unique ways. Focusing on a binary mixture, we show that these couplings render the unpatterned reference state unstable to small perturbations through a variety of instabilities including oscillatory ones which arise on crossing an exceptional point or through a Hopf bifurcation. For fast relaxation of the polar fields, they can be eliminated in favor of the density fields to obtain a microscopic realization of the Nonreciprocal Cahn–Hilliard model for two conserved species with two distinct sources of non-reciprocity, one in the interaction coefficient and the other in the interfacial tension. Our work establishes Janus colloids as a versatile model for a bottom-up approach to both scalar and polar active mixtures.