{"title":"麦克雷特-迈耶联合定理的完善","authors":"Matthew Fox, Chaitanya Karamchedu","doi":"arxiv-2406.08600","DOIUrl":null,"url":null,"abstract":"Using properties of Blum complexity measures and certain complexity class\noperators, we exhibit a total computable and non-decreasing function\n$t_{\\mathsf{poly}}$ such that for all $k$, $\\Sigma_k\\mathsf{P} =\n\\Sigma_k\\mathsf{TIME}(t_{\\mathsf{poly}})$, $\\mathsf{BPP} =\n\\mathsf{BPTIME}(t_{\\mathsf{poly}})$, $\\mathsf{RP} =\n\\mathsf{RTIME}(t_{\\mathsf{poly}})$, $\\mathsf{UP} =\n\\mathsf{UTIME}(t_{\\mathsf{poly}})$, $\\mathsf{PP} =\n\\mathsf{PTIME}(t_{\\mathsf{poly}})$, $\\mathsf{Mod}_k\\mathsf{P} =\n\\mathsf{Mod}_k\\mathsf{TIME}(t_{\\mathsf{poly}})$, $\\mathsf{PSPACE} =\n\\mathsf{DSPACE}(t_{\\mathsf{poly}})$, and so forth. A similar statement holds\nfor any collection of language classes, provided that each class is definable\nby applying a certain complexity class operator to some Blum complexity class.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"2012 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Refinement of the McCreight-Meyer Union Theorem\",\"authors\":\"Matthew Fox, Chaitanya Karamchedu\",\"doi\":\"arxiv-2406.08600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using properties of Blum complexity measures and certain complexity class\\noperators, we exhibit a total computable and non-decreasing function\\n$t_{\\\\mathsf{poly}}$ such that for all $k$, $\\\\Sigma_k\\\\mathsf{P} =\\n\\\\Sigma_k\\\\mathsf{TIME}(t_{\\\\mathsf{poly}})$, $\\\\mathsf{BPP} =\\n\\\\mathsf{BPTIME}(t_{\\\\mathsf{poly}})$, $\\\\mathsf{RP} =\\n\\\\mathsf{RTIME}(t_{\\\\mathsf{poly}})$, $\\\\mathsf{UP} =\\n\\\\mathsf{UTIME}(t_{\\\\mathsf{poly}})$, $\\\\mathsf{PP} =\\n\\\\mathsf{PTIME}(t_{\\\\mathsf{poly}})$, $\\\\mathsf{Mod}_k\\\\mathsf{P} =\\n\\\\mathsf{Mod}_k\\\\mathsf{TIME}(t_{\\\\mathsf{poly}})$, $\\\\mathsf{PSPACE} =\\n\\\\mathsf{DSPACE}(t_{\\\\mathsf{poly}})$, and so forth. A similar statement holds\\nfor any collection of language classes, provided that each class is definable\\nby applying a certain complexity class operator to some Blum complexity class.\",\"PeriodicalId\":501024,\"journal\":{\"name\":\"arXiv - CS - Computational Complexity\",\"volume\":\"2012 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.08600\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.08600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using properties of Blum complexity measures and certain complexity class
operators, we exhibit a total computable and non-decreasing function
$t_{\mathsf{poly}}$ such that for all $k$, $\Sigma_k\mathsf{P} =
\Sigma_k\mathsf{TIME}(t_{\mathsf{poly}})$, $\mathsf{BPP} =
\mathsf{BPTIME}(t_{\mathsf{poly}})$, $\mathsf{RP} =
\mathsf{RTIME}(t_{\mathsf{poly}})$, $\mathsf{UP} =
\mathsf{UTIME}(t_{\mathsf{poly}})$, $\mathsf{PP} =
\mathsf{PTIME}(t_{\mathsf{poly}})$, $\mathsf{Mod}_k\mathsf{P} =
\mathsf{Mod}_k\mathsf{TIME}(t_{\mathsf{poly}})$, $\mathsf{PSPACE} =
\mathsf{DSPACE}(t_{\mathsf{poly}})$, and so forth. A similar statement holds
for any collection of language classes, provided that each class is definable
by applying a certain complexity class operator to some Blum complexity class.