{"title":"确定性通信复杂性的 XOR 定理","authors":"Siddharth Iyer, Anup Rao","doi":"arxiv-2407.01802","DOIUrl":null,"url":null,"abstract":"We prove a lower bound on the communication complexity of computing the\n$n$-fold xor of an arbitrary function $f$, in terms of the communication\ncomplexity and rank of $f$. We prove that $D(f^{\\oplus n}) \\geq n \\cdot\n\\Big(\\frac{\\Omega(D(f))}{\\log \\mathsf{rk}(f)} -\\log \\mathsf{rk}(f)\\Big )$,\nwhere here $D(f), D(f^{\\oplus n})$ represent the deterministic communication\ncomplexity, and $\\mathsf{rk}(f)$ is the rank of $f$. Our methods involve a new\nway to use information theory to reason about deterministic communication\ncomplexity.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An XOR Lemma for Deterministic Communication Complexity\",\"authors\":\"Siddharth Iyer, Anup Rao\",\"doi\":\"arxiv-2407.01802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a lower bound on the communication complexity of computing the\\n$n$-fold xor of an arbitrary function $f$, in terms of the communication\\ncomplexity and rank of $f$. We prove that $D(f^{\\\\oplus n}) \\\\geq n \\\\cdot\\n\\\\Big(\\\\frac{\\\\Omega(D(f))}{\\\\log \\\\mathsf{rk}(f)} -\\\\log \\\\mathsf{rk}(f)\\\\Big )$,\\nwhere here $D(f), D(f^{\\\\oplus n})$ represent the deterministic communication\\ncomplexity, and $\\\\mathsf{rk}(f)$ is the rank of $f$. Our methods involve a new\\nway to use information theory to reason about deterministic communication\\ncomplexity.\",\"PeriodicalId\":501024,\"journal\":{\"name\":\"arXiv - CS - Computational Complexity\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.01802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.01802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An XOR Lemma for Deterministic Communication Complexity
We prove a lower bound on the communication complexity of computing the
$n$-fold xor of an arbitrary function $f$, in terms of the communication
complexity and rank of $f$. We prove that $D(f^{\oplus n}) \geq n \cdot
\Big(\frac{\Omega(D(f))}{\log \mathsf{rk}(f)} -\log \mathsf{rk}(f)\Big )$,
where here $D(f), D(f^{\oplus n})$ represent the deterministic communication
complexity, and $\mathsf{rk}(f)$ is the rank of $f$. Our methods involve a new
way to use information theory to reason about deterministic communication
complexity.