动力加速了进化动态

IF 2.6 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Marc Harper and Joshua Safyan
{"title":"动力加速了进化动态","authors":"Marc Harper and Joshua Safyan","doi":"10.1088/2632-072x/ad5247","DOIUrl":null,"url":null,"abstract":"We combine momentum from machine learning with evolutionary dynamics, where momentum can be viewed as a simple mechanism of intergenerational memory similar to epigenetic mechanisms. Using information divergences as Lyapunov functions, we show that momentum accelerates the convergence of evolutionary dynamics including the continuous and discrete replicator equations and Euclidean gradient descent on populations. When evolutionarily stable states are present, these methods prove convergence for small learning rates or small momentum, and yield an analytic determination of the relative decrease in time to converge that agrees well with computations. The main results apply even when the evolutionary dynamic is not a gradient flow. We also show that momentum can alter the convergence properties of these dynamics, for example by breaking the cycling associated to the rock–paper–scissors landscape, leading to either convergence to the ordinarily non-absorbing equilibrium, or divergence, depending on the value and mechanism of momentum.","PeriodicalId":53211,"journal":{"name":"Journal of Physics Complexity","volume":"17 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Momentum accelerates evolutionary dynamics\",\"authors\":\"Marc Harper and Joshua Safyan\",\"doi\":\"10.1088/2632-072x/ad5247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We combine momentum from machine learning with evolutionary dynamics, where momentum can be viewed as a simple mechanism of intergenerational memory similar to epigenetic mechanisms. Using information divergences as Lyapunov functions, we show that momentum accelerates the convergence of evolutionary dynamics including the continuous and discrete replicator equations and Euclidean gradient descent on populations. When evolutionarily stable states are present, these methods prove convergence for small learning rates or small momentum, and yield an analytic determination of the relative decrease in time to converge that agrees well with computations. The main results apply even when the evolutionary dynamic is not a gradient flow. We also show that momentum can alter the convergence properties of these dynamics, for example by breaking the cycling associated to the rock–paper–scissors landscape, leading to either convergence to the ordinarily non-absorbing equilibrium, or divergence, depending on the value and mechanism of momentum.\",\"PeriodicalId\":53211,\"journal\":{\"name\":\"Journal of Physics Complexity\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-072x/ad5247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-072x/ad5247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们将机器学习中的动量与进化动力学相结合,动量可被视为一种简单的代际记忆机制,类似于表观遗传机制。利用信息发散作为 Lyapunov 函数,我们证明了动量加速了进化动力学的收敛,包括连续和离散复制方程以及种群的欧氏梯度下降。当存在进化稳定状态时,这些方法证明了小学习率或小动量的收敛性,并得出了收敛时间相对减少的解析确定值,与计算结果非常吻合。即使进化动态不是梯度流,主要结果也适用。我们还表明,动量可以改变这些动力学的收敛特性,例如,通过打破与剪刀石头布景观相关的循环,导致收敛到通常的非吸收平衡或发散,这取决于动量的值和机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Momentum accelerates evolutionary dynamics
We combine momentum from machine learning with evolutionary dynamics, where momentum can be viewed as a simple mechanism of intergenerational memory similar to epigenetic mechanisms. Using information divergences as Lyapunov functions, we show that momentum accelerates the convergence of evolutionary dynamics including the continuous and discrete replicator equations and Euclidean gradient descent on populations. When evolutionarily stable states are present, these methods prove convergence for small learning rates or small momentum, and yield an analytic determination of the relative decrease in time to converge that agrees well with computations. The main results apply even when the evolutionary dynamic is not a gradient flow. We also show that momentum can alter the convergence properties of these dynamics, for example by breaking the cycling associated to the rock–paper–scissors landscape, leading to either convergence to the ordinarily non-absorbing equilibrium, or divergence, depending on the value and mechanism of momentum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics Complexity
Journal of Physics Complexity Computer Science-Information Systems
CiteScore
4.30
自引率
11.10%
发文量
45
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信